HEART AND COMPLETE PARTS OF (R, S)-HYPER BI-MODULE

M. NOORANIAN^a AND B. DAVVAZ^{b,*}

ABSTRACT. In this article, we investigate several aspects of (R, S)-hyper bi-modules and describe some their properties. The concepts of fundamental relation, completes part and complete closure are studied regarding to (R, S)-hyper bi-modules. In particular, we show that any complete (R, S)-hyper bi-module has at least an identity and any element has an inverse. Finally, we obtain a few results related to the heart of (R, S)-hyper bi-modules.

1. INTRODUCTION AND PRELIMINARIES

Let R and S be rings and suppose that M be a left R-module and a right S-module. Then M is called a (R, S)-bimodule if for all $r \in R$, $s \in S$ and $m \in M$, (rm)s = r(ms).

For positive integers n and m, the set $M_{n \times m}(T)$ of $n \times m$ matrices of real numbers is an (R, S)-bimodule, where R is the ring $M_n(T)$ of $n \times n$ matrices, and S is the ring $M_m(T)$ of $m \times m$ matrices. Addition and multiplication are carried out using the usual rules of matrix addition and matrix multiplication; the heights and widths of the matrices have been chosen so that multiplication is defined. Note that $M_{n \times m}(R)$ itself is not a ring (unless n = m). The crucial bimodule property, that (rx)s = r(xs), is the statement that multiplication of matrices is associative.

A hypergroupoid (H, \circ) is a non-empty set H together with a hyperoperation \circ defined on H, that is, a mapping of $H \times H$ into $\wp^*(H)$, the family of non-empty subsets of H. If $(x, y) \in H \times H$, its image under \circ is denoted by $x \circ y$. If A, B are non-empty subsets of H then $A \circ B$ is given by

$$A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b.$$

 \bigodot 2022 Korean Soc. Math. Educ.

Received by the editors May 29, 2020. Revised June 19, 2021. Accepted July 13, 2022.

²⁰¹⁰ Mathematics Subject Classification. 20N20, 16Y99.

Key words and phrases. bi-module, (R, S)-hyper bi-module, fundamental relation, complete part. *Corresponding author.

M. Nooranian & B. Davvaz

If $x \in H$, then $x \circ A$ is used for $\{x\} \circ A$ and $A \circ x$ for $A \circ \{x\}$. A hypergroupoid (H, \circ) is called a *hypergroup* in the sense of Marty [15] if for all $x, y, z \in H$ the following two conditions hold: (i) $x \circ (y \circ z) = (x \circ y) \circ z$, (ii) $x \circ H = H \circ x = H$. The second condition is called the *reproduction axiom*. A *hyperring* [11, 17] is a multivalued system $(R, +, \circ)$ which satisfies the ring-like axioms in the following way: (1) (R, +) is a hypergroup in the sense of Marty, (2) (R, \circ) is a semihypergroup, (3) the multiplication is distributive with respect to the hyperoperation +. Let (M, +)be a hypergroup and $(R, +, \cdot)$ be a hyperring. According to [18] M is said to a left hypermodule over the hyperring R if there exists $\cdot : R \times M \to \wp^*(M), (a, m) \mapsto a \cdot m$ such that for all $a, b \in R$ and $m_1, m_2, m \in M$, we have (1) $a \cdot (m_1 + m_2) = a \cdot m_1 + a \cdot m_2$, (2) $(a + b) \cdot m = (a \cdot m) + (b \cdot m), (3)(a \cdot b) \cdot m = a \cdot (b \cdot m)$. Basic definitions and propositions about the hyperstructures are found in [6, 7, 9, 10, 18]. The notion of right hypermodules can be defined similarly.

Definition 1.1 ([16]). Let R, S be hyperrings and let M be a left R-hyper module and a right S-hypermodule. Then M is called an (R, S)-hyperbimodule if for all $r \in R, s \in S$ and $m \in M, (rm)s = r(ms)$.

Example 1. If R is a hyperring, then R itself is an (R, R)-hyperbimodule and so is R^n .

Example 2. Any two-sided hyperideal of a hyperring R is an (R, R)-hyperbimodule.

Example 3. If R, S are hyperrings and $R \subseteq S$, then S is an (R, R)-hyperbimodule. It is also (R, S) and (S, R)-hyperbimodules.

Example 4. Let M be an (R, S)-hyper bi-module, N a left R-subhyper bi-module and T a right S-subhyper bi-module of M. If set $P := N \cap T$ $(P \neq \emptyset)$ then $(M/P, \oplus_P)$ with the following hyperoperation is an (R, S)-hyper bi-module.

$$\begin{aligned} R \times M/P \times S &\longrightarrow M/P \\ (r, m+P, s) &\longmapsto r \cdot m \times s + P. \end{aligned}$$

We call this the quotient hyperbimodule M on P.

Example 5. Let R, S be rings, M a left R-module and right S-module. Let P, G be respectively subrings of R, S which satisfy in the following condition:

$$\begin{cases} \forall \{a, b\} \subseteq R, & aGbG = abG \\ \forall \{a', b'\} \subseteq S, & a'Pb'P = a'b'P. \end{cases}$$

We define the relation ρ on M in the following way:

$$x \rho y \Leftrightarrow \exists t_1 \in G, \ t_2 \in P : \quad x = y + t_1 + t_2$$

also hyperoperation \oplus on the set M/ρ in the following way:

$$\bar{x} \oplus \bar{y} := \{ \bar{w} \in M/P \mid \bar{w} \subseteq \bar{x} + \bar{y} \}.$$

Now, we consider quotient hyperrings $R/G = \{\bar{a} = aG \mid a \in R\}$ and $S/P = \{\bar{b} = bP \mid b \in S\}$. Then, $(M/\rho, \oplus)$ with the following hyperoperation is an (R/G, S/P)-hyperbimodule

$$\begin{array}{l} R/G \times M/\rho \times S/P \longrightarrow M/\rho \\ (\bar{a}, \bar{x}, \bar{b}) \longmapsto \overline{a \cdot x \times b}. \end{array}$$

Example 6. Let M be a right A-hypermodule and N be a right A-subhypermodule of M. Also, suppose that M is a left B-hypermodule and T is a left B-subhypermodule of M. Set $P = N \cap T$ ($P \neq \emptyset$) and define the relation ρ in the following way:

$$\forall (x,y) \in M^2, \ x\rho y \ \Leftrightarrow \ x+P = y+P.$$

Obviously, ρ is an equivalence relation on M. The set M/ρ with the following hyperoperations is an (A, B)-hyperbimodule:

$$(x+P) \oplus (y+P) = \{z+P \mid z \in x+y\}, \\ b \otimes (x+P) \odot a = b \times x \cdot a + P,$$

for all $a \in A$ and $b \in B$. Clearly, the condition (bm)a = b(ma) holds for all $m \in M/\rho$.

The relation β was introduced by Koskas [14] and studied mainly by Corsini [6] and Freni [12, 13], and many others. Vougiouklis defined the relation γ on hyperrings.

Definition 1.2 ([17]). Let R be a hyperring. We define the relation γ as follows:

 $x\gamma y$ if and only if there exist $n \in \mathbb{N}, (k_1, \ldots, k_n) \in \mathbb{N}^n$ and $(x_{i1}, \ldots, x_{ik_i}) \in \mathbb{R}^{k_i}$ such that

$$x, y \in \sum_{i=1}^{n} \Big(\prod_{j=1}^{k_i} x_{ij}\Big).$$

The relation γ is reflexive and symmetric. Let γ^* be the transitive closure of γ . Then the relation γ is the smallest strongly regular relation such that the quotient R/γ^* is a ring.

The following definition for the first time is introduced by Vougiouklis. We refer the readers to [18]. **Definition 1.3** ([18]). Let R be a hyperring and M be a hypermodule over R. The relation ϵ is defined as follows:

$$x \epsilon y \Leftrightarrow \exists n \in \mathbb{N}, \ \exists (m_1, \dots, m_n) \in M^n, \ \exists (k_1, k_2, \dots, k_n) \in \mathbb{N}^n,$$

 $\exists (x_{i1}, x_{i2}, \dots, x_{ik_i}) \in \mathbb{R}^{k_i},$

such that

$$x, y \in \sum_{i=1}^{n} m'_{i}; \quad m'_{i} = m_{i} \quad \text{or} \quad m'_{i} = \sum_{j=1}^{n_{i}} \Big(\prod_{k=1}^{k_{ij}} x_{ijk}\Big) m_{i}.$$

The relation ϵ is reflexive and symmetric. Let ϵ^* be the transitive closure of ϵ . Then ϵ^* is a strongly regular relation both on (M, +) and M as an R-hyper module. Also, the (abelian group) M/ϵ^* is an R/γ^* - module, where R/γ^* is a ring and the relation ϵ^* is the smallest equivalence relation such that the quotient M/ϵ^* is an R/γ^* - module.

If M is an R-hyper module, then we set

$$\epsilon_0 = \{ (m, m) \mid m \in M \}$$

and for every integer $n \ge 1$, ϵ_n is the relation defined as follows:

$$x\epsilon_n y \Leftrightarrow x, y \in \sum_{i=1}^n m'_i.$$

Obviously, for every $n \ge 1$, the relation ϵ_n is symmetric, and the relation $\epsilon = \bigcup_{n \ge 0} \epsilon_n$ is reflexive and symmetric. If M is a hypermodule over a hyperring R and $n \ge 1$ then $\epsilon_n \subseteq \epsilon_{n+1}$.

The fundamental relation ω^* on M can be defined as the smallest equivalence relation such that the quotient M/ω^* be a bimodule over the corresponding fundamental ring such that M/ω^* as a group is not abelian [16].

Definition 1.4 ([16]). Let R and S be hyperrings and suppose that M is an (R, S)-hyper bi-module. We define the relation ω as follows:

 $x \omega y$ if and only if there exist $p \in \mathbb{N}$, $(m_1, \dots, m_p) \in M^p$, $(n_1, n_2, \dots, n_p) \in \mathbb{N}^p$, $(k_{i1}, k_{i2}, \dots, k_{in_i}) \in \mathbb{N}^{n_i}$, $r_{ijk} \in R$, $(n'_1, n'_2, \dots, n'_p) \in \mathbb{N}^p$, $(k'_{i1}, k'_{i2}, \dots, k'_{in'_i}) \in \mathbb{N}^p$

 $\mathbb{N}^{n'_i}, s_{ijk} \in S$, such that

$$x, y \in \sum_{i=1}^{p} m'_{i} \text{ when } m'_{i} = \begin{cases} m_{i} \text{ or} \\ m_{i} \left(\sum_{j=1}^{n'_{i}} \left(\prod_{k=1}^{k'_{ij}} s_{ijk}\right)\right) \text{ or} \\ \left(\sum_{j=1}^{n_{i}} \left(\prod_{k=1}^{k_{ij}} r_{ijk}\right)\right) m_{i} \text{ or} \\ \left(\sum_{j=1}^{n_{i}} \left(\prod_{k=1}^{k_{ij}} r_{ijk}\right)\right) m_{i} \left(\sum_{j=1}^{n'_{i}} \left(\prod_{k=1}^{k'_{ij}} s_{ijk}\right)\right) \end{cases}$$

The relation ω is reflexive and symmetric. Let ω^* be transitive closure of ω .

Lemma 1.5 ([16]). ω^* is a strongly regular relation on (M, +) and M as an (R, S)-hyper bi-module too.

Theorem 1.6 ([16]). The relation ω^* is the smallest equivalence relation such that the quotient M/ω^* is an $(R/\gamma_R^*, S/\gamma_S^*)$ -bi-module.

Definition 1.7 ([16]). Let M be an (R, S)-hyper bi-module. Then we set $\omega_0 = \{(m, m) \mid m \in M\}$ and for every integer $n \ge 1$, ω_n is the relation defined as follows:

$$x\omega_n y \Leftrightarrow x \in \sum_{i=1}^n m'_i, \ y \in \sum_{i=1}^n m'_i.$$

Obviously, for every $n \ge 1$, the relation ω_n are symmetric, and the relation $\omega = \bigcup_{n \ge 0} \omega_n$ is reflexive and symmetric.

2. Complete Closure of (R, S)-hyperbimodules

In this section we find some properties of complete parts of (R, S)-hyperbimodules which are valid in every (R, S)-hyperbimodule. In the following m'_i is the notation that defined in Definition 1.4

Definition 2.1 ([16]). Let M be an (R, S)-hyperbimodule and A be a non-empty subset of M. We say that A is a *complete part* of M if for every $n \in \mathbb{N}$, for every and for every (m'_1, \ldots, m'_n)

$$\sum_{i=1}^{n} m'_i \cap A \neq \emptyset \Rightarrow \sum_{i=1}^{n} m'_i \subseteq A.$$

We say an (R, S)-hyperbimodule M is n-complete if $\forall (m'_1, \ldots, m'_n)$, we have

$$\omega\Big(\sum_{i=1}^n m_i'\Big) = \sum_{i=1}^n m_i',$$

where $\omega\left(\sum_{i=1}^{n} m'_{i}\right)$ is the union of all ω -classes having a non-empty intersection with the set $\sum_{i=1}^{n} m'_{i}$.

Lemma 2.2 ([16]). Let M be an (R, S)-hyperbimodule. For every $x, y, a \in M$, $r \in R$ and $s \in S$, if $x\omega_n y$ then

$$\begin{split} \omega_n^* &\subseteq \omega_{n+1}^*, \\ (x+a) \ \overline{\overline{\omega}}_{n+1} \ (y+a), \quad (x+a) \ \overline{\overline{\omega^*}}_{n+1} \ (y+a), \\ (a+x) \ \overline{\overline{\omega}}_{n+1} \ (a+y), \quad (a+x) \ \overline{\overline{\omega^*}}_{n+1} \ (a+y), \\ r \cdot a \ \overline{\overline{\omega}}_n \ r \cdot b, \qquad r \cdot a \ \overline{\overline{\omega^*}}_n \ r \cdot b, \\ a \cdot s \ \overline{\overline{\omega}}_n \ b \cdot s, \qquad a \cdot s \ \overline{\overline{\omega^*}}_n \ b \cdot s, \end{split}$$

Theorem 2.3. Let M be an R-hyper bi-module and ρ be a strongly regular relation on M. Then $(M/\rho, \oplus)$ is an (R, S)-hyper bi-module if and only if for every $(x, y, z) \in M^3$;

- (1) $\rho(\rho(\alpha(x) \oplus \rho(y)) \oplus \rho(z)) = \rho(\rho(x) \oplus \rho(\rho(y) \oplus \rho(z))),$
- (2) for every $r \in R$, $r.\rho(x) = \rho(r.x)$.

Proof. Let $\overline{x} := \rho(x)$. It is enough to observe that

$$\begin{aligned} (\overline{x} \oplus \overline{y}) \oplus \overline{z} &= \{ \overline{u} \mid u \in \rho(x) + \rho(y) \} \oplus \overline{z} \\ &= \{ \overline{v} \mid v \in \rho(u) + \rho(z), \ u \in \rho(x) + \rho(y) \} \\ &= \{ \overline{v} \mid v \in (\rho(x) + \rho(y)) + \rho(z) \}. \end{aligned}$$

Analogously, we can write $\overline{x} \oplus (\overline{y} \oplus \overline{z}) = \{\overline{w} \mid w \in \rho(x) + (\rho(y) + \rho(z))\}.$

Since ρ is strongly regular, it follows that with the scalar hyperoperation $r \cdot \rho(x) := \rho(r \cdot x)$ we obtain a module, and the properties of M as an R-hyper bi-module, guarantee that the hypergroup M/ρ is an (R, S)-hyper bi-module.

Theorem 2.4. Let M be a hyper bi-module, $\phi_M : M \to M/K$ be the canonical projection. If N is a hyper bi-module and $f : M \to N$ is an (R, S)-homomorphism, then $g : M/K \to N$ exists such that $g\phi_M = f$.

Proof. It is enough to check that for every $x \in M$, $g\phi_M(x) = f(x)$. First, g is well defined: in fact $\phi_M(x) = \phi_M(y)$ implies that xKy. Since N is a hyper bi-module, it follows that f(x) = f(y). Moreover, g is an (R, S)-homomorphism because for every $x, y \in M$, and $u \in x + y$, we have

$$g(\phi_M(x) + \phi_M(y)) = g\phi_M(x+y) = g\phi_M(u) = f(u) = f(x+y) = f(x) + f(y) = g\phi_M(x) + g\phi_M(y).$$

Moreover, for every $r \in R$, and $v \in r \cdot x$ we have

$$g(\phi_M(r \cdot x)) = g(\phi_M(v)) = f(v) = f(r \cdot x) = r \cdot f(x) = r \cdot (g\phi_M(x)).$$

In the similar way, for every $s \in S$, $g(\phi_M(x) \cdot s) = (g\phi_M(x)) \cdot s$.

Theorem 2.5. If $f: M \to M'$ is an (R, S)-homomorphism, then

- (1) for all $x \in M$, we have $f(C(x)) \subseteq C(f(x))$.
- (2) f determines an (R, S)-homomorphism $f^*: M/K \to M'/K'$ defined

$$f^*(\phi_M(x)) = \phi_{M'}(f(x)).$$

Proof. (1) It is easy to check that for every $n \in \mathbb{N}$, the following implication holds;

$$x \ \omega_n \ y \Rightarrow f(x) \ \omega_n \ f(x).$$

(2) f^* is well defined, in fact if $\phi_M(x) = \phi_M(y)$, then xKy. Then, we conclude that $f(x) \ K \ f(y)$, and so $f^*\phi_M(x) = f^*\phi_M(y)$. f^* is an (R, S)-homomorphism because for every $u \in x + y$,

$$\begin{aligned}
f^*(\phi_M(x) + \phi_M(y)) &= f^*(\phi_M(u)) = \phi_{M'}(f(u)) = \phi_{M'}(f(u)) \\
&= \phi_{M'}(f(x) + f(y)) = \phi_{M'}(f(x)) + \phi_{M'}(f(y)) \\
&= f^*(\phi_M(x)) + f^*(\phi_M(y)),
\end{aligned}$$

and for every $r \in R$ and $v \in r \cdot x$, we have

$$f^*(\phi_M(r \cdot x)) = \phi_{M'}(f(v)) = \phi_{M'}(f(r \cdot x)) = r \cdot \phi_M(f(x)) = r \cdot f^*(\phi_M(x)).$$

Theorem 2.6. An (R, S)-hyperbimodule M is n-complete if and only if for every (m'_1, \ldots, m'_n) and $z \in \sum_{i=1}^n m'_i$, we have

$$\omega(z) = \sum_{i=1}^{n} m'_i.$$

Proof. Let M be n-complete, and suppose that $z \in \sum_{i=1}^{n} m'_{i}$. Then, we have $\omega(z) \subseteq \bigcup \quad \omega(z) = \omega \left(\sum_{i=1}^{n} m'_{i}\right) = \sum_{i=1}^{n} m'_{i}.$

$$\omega(z) \subseteq \bigcup_{z \in \sum_{i=1}^{n} m'_{i}} \omega(z) = \omega \left(\sum_{i=1}^{n} m'_{i}\right) = \sum_{i=1}^{n} m'_{i}.$$

Hence, we obtain $\omega(z) \subseteq \sum_{i=1}^{n} m'_i$. Now, if $z \in \sum_{i=1}^{n} m'_i$, then $\omega(z) \subseteq \sum_{i=1}^{n} m'_i$. Consequently, if $u \in \sum_{i=1}^{n} m'_i$, then

quently, if $y \in \sum_{i=1}^{n} m'_i$, then

$$z\omega_n y \Rightarrow z\omega y \Rightarrow y \in \omega(z)$$

Conversely, for every (m'_1, \ldots, m'_n) and $z \in \sum_{i=1}^n m'_i$, we obtain $\omega(z) = \sum_{i=1}^n m'_i$. Therefore,

$$\omega\Big(\sum_{i=1}^n m_i'\Big) = \bigcup_{z \in \sum_{i=1}^n m_i'} \omega(z) = \sum_{i=1}^n m_i'$$

and hence M is n-complete.

Theorem 2.7. If M is an n-complete (R, S)-hyperbimodule then for all (m'_1, \ldots, m'_n) , $\sum_{i=1}^{n} m'_i \text{ is a complete part of } M.$

Proof. For every $m \in \mathbb{N}$ and (z'_1, \ldots, z'_m) , if $\sum_{i=1}^m z'_i \cap \sum_{i=1}^n m'_i \neq \emptyset$, then there exists $a \in \sum_{i=1}^m z'_i \cap \sum_{i=1}^n m'_i$. Now, for every $y \in \sum_{i=1}^m z'_i$, we have $a\omega_m y$, and so $y \in \omega(a)$. Hence, we get $y \in \omega(a) = \sum_{i=1}^n m'_i$. Therefore, we conclude that $\sum_{i=1}^m z'_i \subseteq \sum_{i=1}^n m'_i$.

Proposition 2.8. If M is a n-complete (R, S)-hyperbimodule, then $\omega = \omega_n$.

Proof. It is suffices to prove that $\omega \subseteq \omega_n$. Suppose that $x \omega y$. Then, there exists $m \in \mathbb{N}$, $x \omega_m y$. If $m \leq n$, then $\omega_m \subset \omega_n$. If m > n, then there exist (m'_1, \ldots, m'_m) such that $x, y \in \sum_{i=1}^m m'_i$. Since (M, +) is a hypergroup, it follows that there exist

$$s \in M$$
 and $x \in \sum_{i=1}^{n-1} m'_i + s$ such that $y \in \omega(x) = \sum_{i=1}^n m'_i$. Therefore, we obtain $y \in \sum_{i=1}^n m'_i$, and so $x\omega_n y$.

Definition 2.9. Let A be a non-empty subset of M. The intersection of the complete parts of M which contain A is called *complete closure* of A in M. It will be denoted by $C_M(A)$.

Theorem 2.10. Let A be a non-empty subset of M. Assume that

(1) $K_1(A) := A$, (2) $K_{n+1}(A) := \{x \mid \exists \ p \in \mathbb{N}, \ \exists (m'_1, \dots, m'_p), x \in \sum_{i=1}^p m'_i, \ \sum_{i=1}^p m'_i \cap K_n(A) \neq \emptyset \}$, (3) $K(A) := \bigcup_{n \ge 1} K_n(A)$. Then $K(A) = C_M(A)$.

Proof. It is necessary to prove:

- (1) K(A) is a complete part of M,
- (2) If $A \subseteq B$ and B is a complete part of M then $K(A) \subseteq B$.

Therefore,

(1) Let
$$\sum_{i=1}^{p} m'_{i} \cap K(A) \neq \emptyset$$
 then there exists $n \in \mathbb{N}$ such that $\sum_{i=1}^{p} m'_{i} \cap K_{n}(A) \neq \emptyset$.
For every $y \in \sum_{i=1}^{n} m'_{i}$ we have $y \in K_{n+1}(A)$ and $\sum_{i=1}^{n} m'_{i} \subseteq K(A)$, and so $K(A)$ is a complete part of M .

(2) We have $A = K_1(A) \subseteq B$. Suppose that B is a complete part of M and $K_n(A) \subseteq B$. We prove that this implies $K_{n+1}(A) \subseteq B$. For every $z \in K_{n+1}$ there exist $p \in \mathbb{N}$, (m'_1, \ldots, m'_p) such that $z \in \sum_{i=1}^p m'_i$, $\sum_{i=1}^p m'_i \cap K_n(A) \neq \emptyset$. Thus $\sum_{i=1}^p m'_i \cap B \neq \emptyset$, hence $z \in \sum_{i=1}^p m'_i \subseteq B$ and so $K_{n+1}(A) \subseteq B$. \Box

Lemma 2.11. The following statements hold:

- (1) For all $n \ge 2$ and $m \in M$, we have $K_n(K_2(m)) = K_{n+1}(m)$.
- (2) If $m \in K_n(z)$, then $z \in K_n(m)$.

M. NOORANIAN & B. DAVVAZ

Proof. (1) We can write $K_2(K_2(m)) :=$

$$\{z \mid \exists p \in \mathbb{N}, \ \exists (m'_1, \dots, m'_p) : \ z \in \sum_{i=1}^p m'_i, \ \sum_{i=1}^p m'_i \cap K_2(m) \neq \emptyset \} = K_3(m).$$

We now proceed by induction: If $K_{n-1}(K_2(m)) = K_n(m)$, then $K_n(K_2(m)) :=$

$$\{z \mid \exists p \in \mathbb{N}, \ \exists (m'_1, \dots, m'_p), \ \exists \sigma \in \mathbb{S}_p : \ z \in \sum_{i=1}^p m'_i, \ \sum_{i=1}^p m'_i \cap K_{n-1}(K_2(m)) \neq \emptyset\} = \{z \mid \exists p \in \mathbb{N}, \ \exists (m'_1, \dots, m'_p), \ \exists \sigma \in \mathbb{S}_p : \ z \in \sum^p m'_i, \ \sum^p m'_i \cap K_n(m) \neq \emptyset\} = K_{n+1}(m).$$

(2)] We do the proof by mathematical induction. It is clear that $x \in K_2(y) \Leftrightarrow y \in K_2(x)$. Suppose that $x \in K_{n-1}(y) \Leftrightarrow y \in K_{n-1}(x)$. Let $x \in K_n(y)$, then there exist $q \in \mathbb{N}$, (m'_1, \ldots, m'_q) and $\sigma \in \mathbb{S}_q$ such that

$$x \in \sum_{i=1}^{q} m'_i$$
 and $\sum_{i=1}^{q} m'_i \cap K_{n-1}(y) \neq \emptyset$,

by this it follows that there exists $v \in \sum_{i=1}^{n} m'_i \cap K_{n-1}(y)$. Therefore by choosing $\sigma = 1, v \in K_2(x)$ is obtained. From $v \in K_{n-1}(y)$ we have $y \in K_{n-1}(K_2(x)) = K_n(x)$.

Theorem 2.12. The relation $xKy \Leftrightarrow x \in K(\{y\})$ is an equivalence relation.

Proof. We write $C_M(x)$ instead of $C_M(\{x\})$. Clearly, K is reflexive. Now, let xKy and yKz,. If P is a complete part of M and $z \in P$, then $C_M(z) \subseteq P$, $y \in P$ and consequently $x \in C_M(y) \subseteq P$. For this reason $x \in C_M(z)$ that is xKz. The symmetrically of K follows in a direct way from the preceding lemma.

Theorem 2.13. For each (R, S)-hyperbimodule M, if $R \cdot m = M = m \cdot S$, for every $(r, s) \in R \times S$ and $m \in M$, then $K = \omega^*$.

Proof. Suppose that $x \omega y$. Then

$$\exists n \in \mathbb{N} : x \omega y \Rightarrow \exists (m'_1, \dots, m'_n), \ x, y \in \sum_{i=1}^n m'_i.$$

Now, we have $\sum_{i=1}^{n} m'_i \cap \{x\} \neq \emptyset$, and so $x \in K_2(y) \Rightarrow x \in C_M(y) \Rightarrow xKy \Rightarrow \omega \subseteq K.$

For every $(r, s) \in R \times S$ and $m \in M$, we conclude that $\omega^* \subseteq K$.

Conversely, if xKy, then there exists $n \in \mathbb{N}$ such that $x \in K_{n+1}(y)$. This implies that there exist $m \in \mathbb{N}$, $(m_1'^1, \ldots, m_m'^1)$ such that

$$x \in \sum_{i=1}^{m} m_i^{\prime 1}$$
 and $\sum_{i=1}^{m} m_i^{\prime 1} \cap K_n(y) \neq \emptyset$.

Thus, there exists $x_1 \in \sum_{i=1}^m m_i'^1 \cap K_n(y)$. Consequently, we obtain $x \omega x_1$ and $x_1 \in K_n(y)$, and so there exists $(m_1'^2, \ldots, m_l'^2)$ such that

$$x_1 \in \sum_{i=1}^{l} m_i'^2, \ \sum_{i=1}^{l} m_i'^2 \cap K_{n-1}(y) \neq \emptyset \Rightarrow \exists x_2 \in \sum_{i=1}^{l} m_i'^2 \cap K_{n-1}(y) \Rightarrow x_1 \omega x_2.$$

So as a consequence one obtains:

$$\exists x_n \in \sum_{i=1}^s m_i'^n \cap K_{n-(n-1)}(y) \Rightarrow x_n \in K_1(y) = \{y\} \Rightarrow x_n = y$$

Therefore, $x\omega x_1 \dots \omega x_n = y$. This implies that $K \subseteq \omega$. Since $\omega \subseteq \omega^*$, it follows that $K \subseteq \omega^*$.

Theorem 2.14. If B is a non-empty subset of M, then $C_M(B) = \bigcup_{b \in B} C_M(b)$.

Proof. It is clear for every $b \in B$, $C_M(b) \subseteq C_M(B)$, because every complete part containing B contains $\{b\}$. Therefore, $\bigcup_{b \in B} C_M(b) \subseteq C_M(B)$. In order to prove the converse remember that $C_M(B) = \bigcup_{n \ge 1} K_n(B)$, by Theorem 2.10, one clearly has

$$K_1(B) = B = \bigcup_{b \in B} \{b\} = \bigcup_{b \in B} K_1(b).$$

We demonstrate the theorem by induction. Suppose that it is true for n, that is, $K_n(B) \subseteq \bigcup_{b \in B} K_n(b)$ and we prove that $K_{n+1}(B) \subseteq \bigcup_{b \in B} K_{n+1}(b)$. If $z \in K_{n+1}(B)$, then there exist $q \in \mathbb{N}$, (m'_1, \ldots, m'_q) , $\sigma \in \mathbb{S}_q$ such that

$$z \in \sum_{i=1}^{q} m'_i$$
 and $\sum_{i=1}^{q} m'_i \cap K_n(B) \neq \emptyset$,

by the hypothesis induction $\sum_{i=1}^{q} m'_i \cap (\bigcup_{b \in B} K_n(b)) \neq \emptyset$, hence there exists $b' \in B$ such that $\sum_{i=1}^{q} m'_i \cap K_n(b') \neq \emptyset$. Since $z \in \sum_{i=1}^{q} m'_i$ one gets $z \in K_{n+1}(b')$ and so one has prove $K_{n+1}(B) \subseteq \bigcup_{b \in B} K_{n+1}(b)$. Therefore, $C_M(B) \subseteq \bigcup_{b \in B} C_M(b)$.

Corollary 2.15. If A is a complete part of M, then for every $B \in P^*(M)$, A + B, B + A are complete parts of M.

Proof. We have: $C_M(A + B) = A + B + H(M) = A + H(M) + B = C_M(A) + B = A + B.$

Corollary 2.16. Let $A \in P^*(M)$. Then, A is a complete part of M if and only if A + H(M) = A.

Proof. We have $C_M(A) = A + H(M) = A$.

Corollary 2.17. If $A \in P^*(M)$, then $H(M) + A = A + H(M) = C_M(A)$.

3. ω_n^* -Complete (R, S)-hyper Bi-modules

In [3], Davvaz and Anvariyeh studied θ -part and θ -closure of hypermodules. Also, see [4, 5].

Definition 3.1. An (R, S)-hyper bi-module M is said to be ω_n^* -complete (R, S)-hyper bi-module if there exists $n \in \mathbb{N} \cup \{0\}$, and n is the smallest integer such that $\omega_n^* = \omega^*$ and $\omega_n^* \neq \omega_{n-1}^*$.

Lemma 3.2. An (R, S)-hyper bi-module M is ω_0^* -complete if and only if M is an (R, S)-bi-module.

Proof. Suppose that M is an ω_0^* -complete (R, S)-hyper bi-module. Then $\omega_0^* = \omega^*$, and hence $\omega_2 \subseteq \omega_0$ and $\omega_1 \subseteq \omega_0$. Now, for every $x \in m_1 + m_2$ and $y \in m_2 + m_1$, we have $x\omega_2 y$, so x = y. Also, for every $x, y \in r \cdot m$, or $x, y \in m \cdot s$, we have $x\omega_1 y$, so x = y. Thus, we conclude that $m_1 + m_2 = m_2 + m_1$, $r \cdot m$ and $m \cdot s$ are singleton. Therefore, we conclude that M is an (R, S)-bi-module. Conversely, if M is an (R, S)-bi-module, then $\sum_{i=1}^{n} m'_{i}$ is singleton and $|\sum_{i=1}^{n} m'_{i}| = 1$. By the definition, $x\omega_{n}y$ if and only if $x = \sum_{i=1}^{n} m'_{i}$, $y = \sum_{i=1}^{n} m'_{i}$, thus x = y and $x\omega_{0}y$.

Corollary 3.3. If M is an ω_n^* -complete (R, S)-hyper bi-module, then M/ω_n^* is an $(R/\Gamma_R^*, S/\Gamma_S^*)$ -bi-module.

Proposition 3.4. Every finite (R, S)-hyper bi-module is ω_n^* -complete, for some n.

Proof. Since M is finite, it follows that the succession $\omega_1^* \subseteq \omega_2^* \subseteq \ldots$ is stationary. Thus, there exists $n \in \mathbb{N}$ such that $\omega_n^* = \omega^*$ and $\omega_n^* \neq \omega_{n-1}^*$.

Let M be an (R, S)-hyper bi-module and $\pi : M \to M/\omega^*$ be the canonical projection. We set $H(M) := \pi^{-1}(0_{M/\omega^*})$.

Theorem 3.5. For every non-empty subset A of an (R, S)-hyper bi-module M, we have

- (1) $\pi^{-1}(\pi(A)) = H(M) + A = A + H(M).$
- (2) If A is a complete part of M, then $\pi^{-1}(\pi(A)) = A$.

Proof. (1) For every $x \in H(M) + A$, there exists a pair $(a, b) \in H(M) \times A$ such that $x \in a + b$, so $\pi(x) = \pi(a) \otimes \pi(b) = 0_{M/\omega^*} \otimes \pi(b) = \pi(b)$. Therefore $x \in \pi^{-1}(\pi(b)) \subseteq \pi^{-1}(\pi(A))$.

Conversely, for every $x \in \pi^{-1}(\pi(A))$, an element $b \in H$ exists such that $\pi(x) = \pi(b)$. By the reproducibility, there is $a \in M$ such that $x \in a + b$, and so $\pi(b) = \pi(x) = \pi(a) \otimes \pi(b)$. This implies that $\pi(a) = 0_{M/\omega^*}$ and $a \in \pi^{-1}(0_{M/\omega^*}) = H(M)$. Therefore, we have $x \in a + b \subseteq H(M) + A$. This shows that $\pi^{-1}(\pi(A)) = H(M) + A$. In the same way, we can prove that $\pi^{-1}(\pi(A)) = A + H(M)$.

(2) It is obvious that $A \subseteq \pi^{-1}(\pi(A))$. Moreover, if $x \in \pi^{-1}(\pi(A))$, then there exists an element $b \in A$ such that $\pi(x) = \pi(b)$. Since A is a complete part, it follows that $x \in \omega^*(x) = \omega^*(b) \subseteq A$ and therefore $\pi^{-1}(\pi(A)) \subseteq A$.

Theorem 3.6. We have

- (1) If for every $(v, w) \in H(M)^2$, $v\omega_n w$, then $\omega = \omega_{n+1}$
- (2) If for every $(v, w) \in H(M)^2$, $v\omega_n^* w$, then $\omega = \omega_{n+1}^*$.

Proof. (1) If $x\omega y$, since H(M) + M = M + H(M) = M, then there exists $(v, w) \in H(M)^2$ such that $y \in x + v$ and $y \in x + w$. By hypothesis $v\omega_n w$. Now, using Lemma 2.2, we have $(x + v) \overline{\omega}_{n+1} (x + w)$, whence $x\omega_{n+1}y$, and so $\omega \subseteq \omega_{n+1}$.

(2) The result follows from (1) and Lemma 2.2.

Corollary 3.7. If $v\omega_n^*w$, for every $(v,w) \in H(M)^2$, and there exists $(u',w') \in H(M)^2$ such that $(u',w') \notin \omega_{n-1}^*$, then M is ω_n^* -complete or ω_{n+1}^* -complete.

4. Complete (R, S)-hyper Bi-modules

In this section, we present an important class of (R, S)-hyper bi-module: complete (R, S)-hyper bi-modules. We investigate some interesting properties of this class of (R, S)-hyper bi-module, for instance we show that any complete (R, S)-hyper bi-module has at least an identity and any element has an inverse.

If M is an (R, S)-hyper bi-module and A is a non-empty subset of M, then we recall the complete closure of A by C(A).

Theorem 4.1. Let M be an (R, S)-hyper bi-module. The following conditions are equivalent

(1) for all
$$n \ge 1$$
, m'_1, \dots, m'_n and for all $a \in \sum_{i=1}^n m'_i$, $C(a) = \sum_{i=1}^n m'_i$,
(2) for all m'_1, \dots, m'_n , $C\left(\sum_{i=1}^n m'_i\right) = \sum_{i=1}^n m'_i$,

Proof. $(1 \Rightarrow 2)$: We have $C\Big(\sum_{i=1}^n m'_i\Big) = \bigcup_{a \in \sum_{i=1}^n m'_i} C(a) = \sum_{i=1}^n m'_i.$

$$(2 \Rightarrow 1): \text{ From } a \in \sum_{i=1}^{n} m'_{i}, \text{ we obtain } C(a) \subseteq C(\sum_{i=1}^{n} m'_{i}) = \sum_{i=1}^{n} m'_{i}. \text{ This means } \text{ that } C(a) \cap \sum_{i=1}^{n} m'_{i} \neq \emptyset, \text{ whence } \sum_{i=1}^{n} m'_{i} \subseteq C(a). \text{ Therefore, } C(a) = \sum_{i=1}^{n} m'_{i}. \square$$

Definition 4.2. An (R, S)-hyper bi-module is complete if it satisfies one of the above equivalent conditions.

Example 7. Suppose that $R = \{x, y\}$. Then $(R, +, \cdot)$ is a hyperring, where

+	x	y	•	x	y
x	x	y	x	R	R
y	y	x	y	R	R

If we consider R as a (R, R)-hyper bi-module, then it is easy to check that the condition (2) of Theorem 4.1 is satisfied. Therefore, R is complete.

Corollary 4.3. If M is a complete (R, S)-hyper bi-module, then either there exist m'_1, \ldots, m'_n such that $\omega^*(x) = \sum_{i=1}^n m'_i$.

Theorem 4.4. If M is a complete (R, S)-hyper bi-module, then

- (1) $H(M) = \{e \in M : \forall x \in M, x \in x + e \cap e + x\}$, which means that H is the set of two-sided identities of H.
- (2) (M, +) has at least an identity and any element has an inverse and reversible

Proof. (1) If $u \in H(M)$, then for all $m \in M$, we have $m \in C(m) = m + H(M) = m + u$. Similarly we have mu + m, which means that u is a two-sided identity of M.

Conversely, any two-sided identity u of M is an element of H(M), since $\pi(u) = 0$.

(2) Let a, b, c be elements of M and e be a two-sided identity, such that $e \in b + a \cap a + c$. Then, b + a = H(M) = a + c and $a + b \subseteq a + b + c \subseteq a + H(M) + c = H(M) + a + c = H(M)$, hence a + b = H(M), so b is an inverse of a. Moreover, if $a \in u + v$, then $H(M) = b + a \subseteq b + u + v$, so for any inverse v' of v, we have $v' \in H(M) + v' \subseteq b + uvv' = b + u + H(M) = b + u$. Similarly, from here we obtain $u' \in v + b$, and so $u' + a \subseteq v + b + a = C(v)$, whence $v \subseteq C(v) = u' + a$. In a similar way, we obtain uav'.

Definition 4.5. An (R, S)-hyper bi-module is called *flat* if for all subhyper bimodule K of M, we have $H(K) = H(M) \cap K$.

Example 8. Let $R = \{0, 1, 2, 3\}$ be a set together with the hyperoperation + and the binary operation \cdot defined as follows:

+	0	1	2	3
0	0	1	2	3
1	1	0	2	3
2	2	2	$\{0, 2, 3\}$	$\{2,3\}$
3	3	3	$\{2, 3\}$	$\{0, 1, 2\}$

and $a \cdot b = 0$ for all $a, b \in R$. Then $(R, +, \cdot)$ is a hyperring. According to Example 1, R is an (R, R)-hyper bi-module. Clearly, $\{0\}$, $\{0, 1\}$ and R are subhyper bi-modules of R. Since $H(\{0\}) = \{0\}$, $H(\{0, 1\}) = \{0\}$ and $H(R) = \{0\}$, we conclude that

$$\begin{split} H(\{0\}) &= H(R) \cap \{0\}, \\ H(\{0,1\}) &= H(R) \cap \{0,1\}, \\ H(R) &= H(R) \cap R. \end{split}$$

This means that R is a flat (R, R)-hyper bi-module.

Theorem 4.6. Any complete (R, S)-hyper bi-module is flat.

Proof. Let M be a complete (R, S)-hyper bi-module and suppose that K is a subhyper bi-module M. We have

$$H(M) \cap K = \{e \in M : \forall x \in M, x \in x + e \cap e + x\} \cap K$$
$$= \{e \in K : \forall x \in M, x \in x + e \cap e + x\} \subseteq H(K).$$

Moreover, we have

$$y \in C_K(x) \Rightarrow y\omega_K^* x \Rightarrow y\omega_M^* x \Rightarrow y \in C_M(x),$$

which means that $C_K(x) \subseteq C_M(x)$. Clearly, $H(M) \cap K \neq \emptyset$. If $x \in H(M) \cap K \subseteq H(K)$, then $C_K(x) = H(K)$, $C_M(x) = H(M)$. Hence $H(K) \subseteq H(M)$ whence $H(K) \subseteq H(M) \cap K$. Therefore, we have $H(K) = H(M) \cap K$.

Corollary 4.7. If K is a subhyper bi-module of a complete (R, S)-hyper bi-module M, then H(K) = H(M).

Proof. Set $x \in H(M) \cap K$. We have $H(M) = C(x+x) = x+x \subseteq H(M) \cap K$, whence $H(M) \subseteq H(M) \cap K$, then we apply the above theorem. Hence, H(K) = H(M). \Box

Theorem 4.8. Let M and N be two complete (R, S)-hyper bi-modules and $f : M \to N$ be a good homomorphism. Then we have f(H(M)) = H(N).

Proof. Let $x \in H(M)$. Then x + x = H(M), whence f(x) + f(x) = f(H(M)). On the other hand, f(x) is an identity of N, since x is an identity of M, which means that $f(x) \in H(N)$. Therefore, H(N) = f(x) + f(x) = f(H(M)).

5. Heart of (R, S)-hyperbimodules

In [8], Corsini and Leoreanu investigated the heart of hypergroups. In [1] and [2], Anvariyeh and Davvaz studied the characterizations of hearts of hypermodules,

and established a few results concerning the sequence of heart. In this section, we examine and study the heart of (R, S)-hyper modules.

Theorem 5.1. Let M be an (R, S)-hyper bi-module and B the union of summations of finite numbers of $\sum_{i=1}^{n} m'_i$, containing at least one right and at least one left identity and be scalar multiplicatively closed. Then B = H(M).

Proof. We set $E_l(E_r)$ the set of left (right) identities and $T = \{P \in B \mid P \cap E_l \neq \emptyset, P \cap E_r \neq \emptyset\}$. Furthermore, for every $x \in M$, we denote with $i_l(x)(i_r(x))$ the set of left (right) inverses of x. The first, we prove that for every $a \in B$, $i_l(a) \subseteq B \supseteq i_r(a)$. Let $a \in M$, then a $\sum_{i=1}^n m'_i = P \in T$ exists such that $a \in P$. If $a' \in i_l(a), e' \in i_l$ exists such that $e' \in a' + a$; if $a'' \in i_l(a), e'' \in E_r$ exists such that $e'' \in a + a''$. We now consider the $P_1 = a' + \sum_{i=1}^n m'_i + a + a''$, we have $P_1 \subseteq T$, in fact $\{e', e''\} \subseteq e' + e'' \subseteq a' + a + a'' \subseteq P_1$. Furthermore, $\{a', a''\} \subseteq P_1$; in fact $a' + a + a'' \subseteq P_1$ and $a' \in a' + e'' \subseteq a' + a + a''$, also $a'' \in e' + a'' \subseteq a' + a + a''$.

Now, we prove that B is a complete part of M. Let $a \in \sum_{i=1}^{n} m'_i \cap B \neq \emptyset$, hence

there exists $\sum_{i=1}^{t} z'_i = P \in T$ such that $a \in P$. Now let e', e'' be the left and right identities, respectively. We have $a', a'' \in M$ such that $e' \in a' + a$, $e'' \in a + a''$. Then $\sum_{i=1}^{n} m'_i \subseteq e' + \sum_{i=1}^{n} m'_i + e'' \subseteq a' + a + \sum_{i=1}^{n} m'_i + a + a'' \subseteq a' + P + \sum_{i=1}^{n} m'_i + P + a'' \supseteq a' + a + a'' \supseteq \{e', e''\}$, thus $a' + P + \sum_{i=1}^{n} m'_i + P + a'' = P_1$. Therefore $\sum_{i=1}^{n} m'_i \subseteq P_1 \in T$ and for this reason $\sum_{i=1}^{n} m'_i \subseteq B$.

Let $a, b \in M$, such that $a \in P, b \in Q$ where $P, Q \in T$. Then $a + b \in B$. Also, for every $(r, s) \in R \times S, r \cdot a \subseteq B$ and $a \cdot s \subseteq B$.

Furthermore, B satisfies the conditions of reproducibility. Since M is an (R, S)-hyper bi-module, the properties of M as an (R, S)-hyperbimodule, guarantee that the hypergroup B is an (R, S)-hyper bi-module. It is clear that $B \subseteq H(M)$. As seen from the above, it turns out that B is a complete part subhyper bi-module, thus $H(M) \subseteq B$.

We denote $\sum_{C} (A)$ the set hypersums A of elements of M such that C(A) = A.

Theorem 5.2. If M is an (R, S)-hyper bi-module and (x'_1, \ldots, x'_n) such that $\sum_{i=1}^n x'_i \in \sum_C (M)$, then there exists (y'_1, \ldots, y'_n) such that $\sum_{i=1}^n x'_i + \sum_{i=1}^n y'_i = H(M)$.

Proof. We set $x'_i = \sum_{j=1}^{n_i} \left(\prod_{k=1}^{k_{ij}} r_{ijk}\right) x_i$. For $1 \le t \le n$, let a_t be an element of H(M). Then, there exists $y_t \in M$ such that $a_t \in x_t + y_t$, and hence

$$\sum_{j=1}^{n_t} \prod_{k=1}^{k_{tj}} r_{tjk} a_t \subseteq \sum_{j=1}^{n_t} \prod_{k=1}^{k_{tj}} r_{tjk} x_t + \sum_{j=1}^{n_t} \prod_{k=1}^{k_{tj}} r_{tjk} y_t = x'_t + y'_t.$$

Since H(M) is a complete part, it follows that $x'_t + y'_t \subseteq H(M)$. Therefore

$$\sum_{i=1}^{n} x'_i + y'_n = H(M) + \sum_{i=1}^{n} x'_i + y'_n = \sum_{i=1}^{n-1} x'_i + H(M) + x'_n + y'_n$$
$$= \sum_{i=1}^{n-1} x'_i + H(M) = H(M) + \sum_{i=1}^{n-1} x'_i$$

and so

$$\sum_{i=1}^{n} x'_{i} + y'_{n} + y'_{n-1} = H(M) + \sum_{i=1}^{n-2} x'_{i} + x'_{n-1} + y'_{n-1} = H(M) + \sum_{i=1}^{n-2} x'_{i}.$$

Going on the same way one arrives to

$$\sum_{i=1}^{n} x'_{i} + \sum_{i=1}^{n} y'_{i} = H(M) + x'_{1} + y'_{1} = H(M).$$

Lemma 5.3. Let (M, +) be an (R, S)-hyper bi-module, then

- (1) M H(M) is a complete part of M.
- (2) If M H(M) is a hypersum, then H(M) is also a hypersum.

Proof. (1) It is straightforward.

(2) For (1), M - H(M) is a complete part. Now by using Theorem 3.2, the proof is completed.

224

Remark 1. Let M be an (R, S)-hyper bi-module endowed with a complete hypersum. The following implication is satisfied for every $A \in P^*(M)$:

$$A \cap \sum_{i=1}^{n} m'_{i} = \emptyset \Rightarrow C(A) \cap \sum_{i=1}^{n} m'_{i} = \emptyset.$$

Assume that $z \in C(A) \cap \sum_{i=1}^{n} m'_{i}$, then $a \in A$ exists such that $z \in C(a)$, hence C(a) = C(z). The hypothesis $\sum_{i=1}^{n} m'_{i} = C\left(\sum_{i=1}^{n} m'_{i}\right)$ implies $C(z) \subseteq \bigcup_{\substack{y \in \sum_{i=1}^{n} m'_{i}}} C(y) = C\left(\sum_{i=1}^{n} m'_{i}\right) = \sum_{i=1}^{n} m'_{i}.$

Therefore $a \in A$, $a \in C(z) \subseteq \sum_{i=1}^{n} m'_i$, where $\sum_{i=1}^{n} m'_i \cap A \neq \emptyset$ which absurd.

Let (M, +) be an (R, S)-hyper bi-module. Let's consider the sequence

(*)
$$M \supseteq H(M) = H_1 \supseteq H(H(M))) = H_2 \supseteq \ldots \supseteq H_k \supseteq H_{k+1} \supseteq \ldots \supseteq H_n \supseteq \ldots$$

Proposition 5.4. Let M be an (R, S)-hyper bi-module. Then the following conditions are equivalent:

- (1) The sequence (*) is finite;
- (2) there is $(n,k) \in \mathbb{N}^2$, where n > k+1, such that H_n is a complete part of H_k ;
- 3) there is $(n,k) \in \mathbb{N}^2$ where n > k+1, such that for any $(x,y) \in (H_k H_n) \times (H_k H_n); (x+y) \cap (H_k H_n) \neq \emptyset$ implies $x + y \subseteq H_k H_n;$
- (4) there is $(n,k) \in \mathbb{N}^2$, where n > k+1, such that for any H_n is an ω_n -conjugable.

Proof. $(1 \Rightarrow 2)$ If the sequence (*) is finite, then there is $n \in \mathbb{N}$ such that $H_n = H_{n-1}$, hence H_{n-2} is a complete part of H_n .

 $(2 \Rightarrow 3)$ If H_n is a complete part of H_k , then $H_k - H_n$ is a complete part of H_k .

 $(3 \Rightarrow 4)$ Ones proves easily that for any $s \in \mathbb{N}$, H_s is a closed subhyperbimodule of M. Moreover, for all $a, b \in H_k$, if $\{a, b\} \subseteq H_k - H_n$, we have $a + b \subseteq H_n$, if $a \neq b$ and $|\{a, b\} \cap H_n| = 1$, we have $a + b \subseteq H_k - H_n$. Then, we obtain that H_n is H_k -conjugable. $(4 \Rightarrow 1)$ We know H_n is a complete part subhyperbimodule of H_k . Hence $H_{k+1} = H(H_k) \subseteq H_n \subseteq H_{k+1}$ from which $H_n = H_{k+1}$. So, we have: $H_{n+1} = H(H_n) = H(H_{k+1}) = H_{k+2} \supseteq H_n = H_{k+1} \supseteq H_{k+2}$. Therefore, $H_n = H_{k+2} = H_{n+1}$. Let $H_{n+s} = H_{k+1}$. It follows $H_{n+s+1} = H(H_{n+s}) = H_{k+1} = H_{k+2} = H_{k+1}$. Then, for any m such that $m \ge n$, we have $H(M) = H_n$.

Theorem 5.5. Let (M, +) be an (R, S)-hyper bi-module such that the sequence (*) is finite, and let N be a complete part subhyper bi-module of M. Then there is $p \in \mathbb{N}$ such that $H_{p+1}(N) = H_{p+1}(M)$.

Proof. Let's remark that H(N) is a subhyper bi-module of H(M). Indeed, for any $a \in H(K)$, there is $e \in N$ such that $a \in a + e$, it's clear that $a \in \omega_K(e) \subseteq \omega_M(e) = H(M)$. Moreover, since N is a complete part subhyper bi-module of M, we have $H(M) \subseteq N$. Then $H_1(N) \subseteq H_1(M) \subseteq N$. For any $s \ge 1$, from $H_s(N) \subseteq H_s(M) \subseteq H_{s-1}(N)$, one obtains $H_{s+1}(N) \subseteq H_{s+1}(M) \subseteq H_s(N)$, and hence $N \supseteq H_1(M) \supseteq H_1(N) \supseteq H_2(N) \supseteq \dots$.

By Theorem 5.4, there is $(n, p) \in \mathbb{N} \times \mathbb{N}$, where n > p + 1, such that $H_n(M) = H_{p+1}(M)$, therefore $H_{p+1}(M) = H_{p+1}(N)$.

Remark 2. If N_1, N_2 are subhyperbimodules of M, then

$$H(N_1 \cap N_2) \le H(N_1) \cap H(N_2).$$

Proposition 5.6. If $N_1, N_2 \leq M$, where M has a finite sequence (*), then there exists $p \in \mathbb{N}$, such that $H_{p+1}(N_1 \cap N_2) = H_{p+1}(H(N_1) \cap H(N_2))$.

Proof. Let's consider $\overline{M} := N_1 \cap N_2$ and $\overline{N} := H(N_1) \cap H(N_2)$. Then \overline{N} is a subhyperbimodule, complete part of \overline{M} . (We can verify this using the definition of a complete part.) Now, we can use the proof of Theorem 5.5.

Also, we can give a relation for (R, S)-subhyper bi-module of M:

$$\exists p \in \mathbb{N}, \quad H_{p+1}(N_1 \cap N_2 \cap \ldots \cap N_m) = H_{p+1}(H(N_1) \cap H(N_2) \cap \ldots \cap H(N_m)).$$

Remark 3. If $N_1, N_2 \leq M$, then

$$H(N_1) \subseteq N_1 \cap H(\langle N_1 \cup N_2 \rangle).$$

Generally, we have not equality. Let M_1 and M_2 be two (R, S)-hyper bi-modules. Let m_1, n_1 arbitrary in M_1 and m_2, n_2 arbitrary in M_2 . Let's define on $M = M_1 \cup M_2 \cup \{a\}$

 $(a \notin M_1 \cup M_2)$ with the following hyperoperations:

+'	m_1	a	m_2
n_1	$n_1 + m_1$	a	M
a	a	M_1	M
n_2	M	M	$n_2 + m_2$

and for every $(r, s) \in R \times S, x \in M_1$ and $y \in M_2$ scalar multiplication

$$r \cdot x = r \cdot x, \quad r \cdot y = r \cdot y, \quad x \cdot s = x \cdot s, \quad y \cdot s = y \cdot s$$

and $r \cdot a = a \cdot s = a$. We can easily verify (M, +') with scalar multiplication \cdot' is an (R, S)-hyper bi-module. We consider subhyper bi-modules $N_1 = M \cup \{a\}, N_2 = M_2, N_1 \cup N_2 = M, \langle N_1 \cup N_2 \rangle = M$, then $H(\langle N_1 \cup N_2 \rangle) = M$. So

$$H(N_1) = M_1 \subsetneqq N_1 \cap H(\langle N_1 \cup N_2 \rangle) = N_1 = M_1 \cup \{a\}.$$

Theorem 5.7. Let M be an (R, S)-hyper bi-module and N_1, N_2 be two subhyper bimodule of M. If for every $a \in \langle N_1 \cup N_2 \rangle - (N_1 \cup N_2)$, there exists $(n_1, n_2) \in N_1 \times N_2$, such that $a \in n_1 + n_2$ and if $\langle H(N_1) \cup H(N_2) \rangle$ is a closed subhyper bi-module of $H(\langle N_1 \cup N_2 \rangle)$ then $\langle H(N_1) \cup H(N_2) \rangle = H(\langle N_1 \cup N_2 \rangle)$.

Proof. We shall prove that $\langle H(N_1) \cup H(N_2) \rangle$ is conjugable in $\langle N_1 \cup N_2 \rangle$ as hyper bi-module. $\langle H(N_1) \cup H(N_2) \rangle$ is closed in $\langle N_1 \cup N_2 \rangle$ because, from $a \in b + x$, where $(a,b) \in \langle H(N_1) \cup H(N_2) \rangle^2$ and $x \in \langle N_1 \cup N_2 \rangle$, it results $(a,b) \in (H^2 \langle N_1 \cup N_2 \rangle)$ and so $x \in H(\langle N_1 \cup N_2 \rangle)$. Using now the condition given in the proposition, $x \in \langle H(N_1) \cup H(N_2) \rangle$.

As regards an arbitrary element $a \in \langle N_1 \cup N_2 \rangle$, we have three situation:

$$a \in N_1 \Rightarrow \exists a' \in N_1, \ a + a' \subseteq H(N_1) \subseteq \langle H(N_1) \cup H(N_2) \rangle; a \in N_2 \Rightarrow \exists a' \in N_2, \ a + a' \subseteq H(N_2) \subseteq \langle H(N_1) \cup H(N_2) \rangle; a \in \langle N_1 \cup N_2 \rangle - (N_1 \cup N_2) \Rightarrow \exists n_1 \in N_1, \exists n_2 \in N_2, a \in n_1 + n_2$$

For n_i there exists $n'_i \in N_i$, such that $n_i + n'_i \in H_{n_i}$, i = 1, 2.

So, $a + n'_1 + n'_2 \subseteq (n'_1 + n'_2) + (n_2 + n'_2) \subseteq H(N_1) \oplus H(N_2) \subseteq \langle H(N_1) \cup H(N_2) \rangle$, whence for every $t \in n'_1 + n'_2$, $a + t \subseteq \langle H(N_1) \cup H(N_2) \rangle$.

An (R, S)-hyper bi-module M is called 1-(R, S)-hyper bi-module if H(M) is a singleton.

Lemma 5.8. If M is a 1-(R, S)-hyper bi-module, then M is an ω_2^* -complete (R, S)-hyper bi-module.

Proof. Suppose that $H(M) = \{e\}$. Then for all $m \in M$, we have m + e = e + m and so the classes module ω are $\{e, m\}$. It follows that $\omega = \omega_2 = \omega_2^*$.

Theorem 5.9. Let M be a 1-(R,S)-hyper bi-module and $H(M) = \{e\}$. Then

- (1) The ω^* -classes are the summations e + a, where $a \in M$.
- (2) Every (R, S)-subhyper bi-module of M is complete part.
- (3) If $\{M_i\}_{i \in I}$ is a family of (R, S)-subhyper bi-module of M, then $\bigcap_{i \in I} M_i$ is an (R, S)-subhyper bi-module of M.
- (4) The direct product of 1-(R, S)-hyper bi-modules is a 1-(R, S)-hyper bi-module.

Proof. (1) It is straightforward.

(2) If N is a subhyper bi-module of M, we have $N \cap W(M) \neq \emptyset$, for this reason $H(M) \subseteq N$, hence N = N + H(M) and therefore N is a complete part.

(3) For (2), for every $i \in I$, $e \in M_i$. We set $M = \bigcap_{i \in I} M_i$, hence $M \neq \emptyset$. Then for every $x, y \in M$, $b \in M$ exist such that $y \in b + x$, but for every $i \in I$, for (2), M_i is a closed submodule, thus $b \in M_i$. Also, for every $r \in R, m \in M$, we have $r.m \subseteq M$.

(4) Set $N = \prod_{i \in I} N_i$, $m' = (m'_i)_{i \in I} \in N$, $e = (e_i)_{i \in I}$. We have $x\omega_n e$ if and only if

 $z'^{1} = (z'^{1}_{i})_{i \in I}, \ z'^{2} = (z'^{2}_{i})_{i \in I}, \dots, z'^{n} = (z'^{n}_{i})_{i \in I},$ exists such that $x, e \in \sum_{i=1}^{n} z'^{k}$, that is if and only if for each $i \in I, \ z'_{i}, e_{i} \in \sum_{i=1}^{n} z'^{k}_{i}$. Then $z'_{i} = \sum_{i=1}^{n} z'^{k}_{i} = e_{i}$, from $x = e_{i}$,

for this reason $H(M) = \{e\}$.

6. CONCLUSION

The notion of (R, S)-hyper bi-modules is a generalization of hypermodules and bimodules. The heart of an (R, S)-hyper bi-module is the neutral element of the quotient fundamental bi-module. We studied the properties of the heart and complete parts of (R, S)-hyper bi-modules. In particular, we proved that any compact (R, S)-hyper bi-module has at least one identity element.

For future research, we will study the properties of exact sequences of (R, S)-hyper bi-modules.

References

- S.M. Anvariyeh, S. Mirvakili & B. Davvaz: *R*-Parts and modules derived from strongly *U*-regular relations on hypermodules. Le Matematiche **72** (2017), 103-121.
- S.M. Anvariyeh & B. Davvaz: On the heart of hypermodoules. Mathematica Scandinavica 106 (2010), 39-49.
- S.M. Anvariyeh & B. Davvaz: θ-Closure and θ-parts of hypermodules. Algebra Colloq. 18 (2011), 629-638.
- S.M. Anvariyeh & B. Davvaz: Strongly transitive geometric spaces associated to hypermodules. J. Algebra 322 (2009), 1340-1359.
- 5. S.M. Anvariyeh, S. Mirvakili & B. Davvaz: θ^* -Relation on hypermodules and fundamental modules over commutative fundamental rings. Comm. Algebra **36** (2008), 622-631.
- 6. P. Corsini: Prolegomena of Hypergroup Theory. Aviani Editore, Italy, 1993.
- P. Corsini & V. Leoreanu: Applications of Hyperstructure Theory. Advances in Mathematics, Kluwer Academic Publishers, 2003.
- P. Corsini & V. Leoreanu: About the heart of a hypergroup. Acta Univ. Carolinae 37 (1996), 17-28.
- 9. B. Davvaz & V. Leoreanu-Fotea: Hyperring Theory and Applications. International Academic Press, USA, 2007.
- B. Davvaz: Polygroups Theory and Related Systems. USA: World Scientific Publishing Co. Pte. Ltd., 2013.
- 11. B. Davvaz & T. Vougioklis: Commutative rings obtained from hyperrings (H_v -rings) with α^* -relations. Comm. Algebra **35** (2007), 3307-3320.
- D. Freni: Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory. Comm. Algebra 32 (2004), 969-988.
- 13. D. Freni: A new characterization of the derived hypergroup via strongly regular equivalences. Comm. Algebra **30** (2002), 3977-3989.
- M. Koskas: Groupoides, demi-hypergroupes et hypergroupes. J. Math. Pure Appl. 49 (1970), 155-192.
- F. Marty: Sur une generalization de la notion de groupe. 8^{iem} Congres Math. Scandinaves, Stockholm (1934), 45-49.
- M. Nooranian & B. Davvaz: Fundamental relations on hyper bi-modules and characterizations of complete hyper bi-modules. Asian-Eur. J. Math. 15(2) (2022), Paper No. 2250040, 13 pp.
- T. Vougiouklis: The fundamental relation in hyperrings. The general hyperfield. Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific (1991), 203-211.

M. Nooranian & B. Davvaz

 T. Vougiouklis: Hyperstructures and Their Representations. Hadronic Press, Inc, 115, Palm Harber, USA, 1994.

^aProfessor: Department of Mathematical Sciences, Yazd University, Yazd, Iran Email address: nooranianm@yahoo.com

 $^{\rm b}{\rm Professor:}$ Department of Mathematical Sciences, Yazd University, Yazd, Iran $\mathit{Email}\ address:\ {\tt davvaz@yazd.ac.ir}$