HEART AND COMPLETE PARTS OF (R, S)-HYPER BI-MODULE

M. Nooranian ${ }^{\text {a }}$ and B. Davvaz ${ }^{\text {b,* }}$

Abstract

In this article, we investigate several aspects of (R, S)-hyper bi-modules and describe some their properties. The concepts of fundamental relation, completes part and complete closure are studied regarding to (R, S)-hyper bi-modules. In particular, we show that any complete (R, S)-hyper bi-module has at least an identity and any element has an inverse. Finally, we obtain a few results related to the heart of (R, S)-hyper bi-modules.

1. Introduction and Preliminaries

Let R and S be rings and suppose that M be a left R-module and a right S module. Then M is called a (R, S)-bimodule if for all $r \in R, s \in S$ and $m \in M$, $(r m) s=r(m s)$.

For positive integers n and m, the set $M_{n \times m}(T)$ of $n \times m$ matrices of real numbers is an (R, S)-bimodule, where R is the ring $M_{n}(T)$ of $n \times n$ matrices, and S is the ring $M_{m}(T)$ of $m \times m$ matrices. Addition and multiplication are carried out using the usual rules of matrix addition and matrix multiplication; the heights and widths of the matrices have been chosen so that multiplication is defined. Note that $M_{n \times m}(R)$ itself is not a ring (unless $n=m$). The crucial bimodule property, that $(r x) s=r(x s)$, is the statement that multiplication of matrices is associative.

A hypergroupoid (H, \circ) is a non-empty set H together with a hyperoperation \circ defined on H, that is, a mapping of $H \times H$ into $\wp^{*}(H)$, the family of non-empty subsets of H. If $(x, y) \in H \times H$, its image under \circ is denoted by $x \circ y$. If A, B are non-empty subsets of H then $A \circ B$ is given by

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b
$$

[^0]If $x \in H$, then $x \circ A$ is used for $\{x\} \circ A$ and $A \circ x$ for $A \circ\{x\}$. A hypergroupoid (H, \circ) is called a hypergroup in the sense of Marty [15] if for all $x, y, z \in H$ the following two conditions hold: (i) $x \circ(y \circ z)=(x \circ y) \circ z$, (ii) $x \circ H=H \circ x=H$. The second condition is called the reproduction axiom. A hyperring [11, 17] is a multivalued system $(R,+, \circ)$ which satisfies the ring-like axioms in the following way: (1) $(R,+)$ is a hypergroup in the sense of Marty, (2) (R, \circ) is a semihypergroup, (3) the multiplication is distributive with respect to the hyperoperation + . Let $(M,+)$ be a hypergroup and $(R,+, \cdot)$ be a hyperring. According to [18] M is said to a left hypermodule over the hyperring R if there exists $\cdot: R \times M \rightarrow \wp^{*}(M),(a, m) \mapsto a \cdot m$ such that for all $a, b \in R$ and $m_{1}, m_{2}, m \in M$, we have (1) $a \cdot\left(m_{1}+m_{2}\right)=a \cdot m_{1}+a \cdot m_{2}$, (2) $(a+b) \cdot m=(a \cdot m)+(b \cdot m),(3)(a \cdot b) \cdot m=a \cdot(b \cdot m)$. Basic definitions and propositions about the hyperstructures are found in $[6,7,9,10,18]$. The notion of right hypermodules can be defined similarly.

Definition 1.1 ([16]). Let R, S be hyperrings and let M be a left R-hyper module and a right S-hypermodule. Then M is called an (R, S)-hyperbimodule if for all $r \in R, s \in S$ and $m \in M,(r m) s=r(m s)$.

Example 1. If R is a hyperring, then R itself is an (R, R)-hyperbimodule and so is R^{n}.

Example 2. Any two-sided hyperideal of a hyperring R is an (R, R)-hyperbimodule.
Example 3. If R, S are hyperrings and $R \subseteq S$, then S is an (R, R)-hyperbimodule. It is also (R, S) and (S, R)-hyperbimodules.

Example 4. Let M be an (R, S)-hyper bi-module, N a left R-subhyper bi-module and T a right S-subhyper bi-module of M. If set $P:=N \cap T(P \neq \emptyset)$ then ($M / P, \oplus_{P}$) with the following hyperoperation is an (R, S)-hyper bi-module.

$$
\begin{aligned}
& R \times M / P \times S \longrightarrow M / P \\
& (r, m+P, s) \longmapsto r \cdot m \times s+P .
\end{aligned}
$$

We call this the quotient hyperbimodule M on P.
Example 5. Let R, S be rings, M a left R-module and right S-module. Let P, G be respectively subrings of R, S which satisfy in the following condition:

$$
\begin{cases}\forall\{a, b\} \subseteq R, & a G b G=a b G \\ \forall\left\{a^{\prime}, b^{\prime}\right\} \subseteq S, & a^{\prime} P b^{\prime} P=a \prime b^{\prime} P .\end{cases}
$$

We define the relation ρ on M in the following way:

$$
x \rho y \Leftrightarrow \exists t_{1} \in G, t_{2} \in P: \quad x=y+t_{1}+t_{2}
$$

also hyperoperation \oplus on the set M / ρ in the following way:

$$
\bar{x} \oplus \bar{y}:=\{\bar{w} \in M / P \mid \bar{w} \subseteq \bar{x}+\bar{y}\}
$$

Now, we consider quotient hyperrings $R / G=\{\bar{a}=a G \mid a \in R\}$ and $S / P=\{\bar{b}=$ $b P \mid b \in S\}$. Then, $(M / \rho, \oplus)$ with the following hyperoperation is an $(R / G, S / P)$ hyperbimodule

$$
\begin{aligned}
& R / G \times M / \rho \times S / P \longrightarrow M / \rho \\
& (\bar{a}, \bar{x}, \bar{b}) \longmapsto \overline{a \cdot x \times b}
\end{aligned}
$$

Example 6. Let M be a right A-hypermodule and N be a right A-subhypermodule of M. Also, suppose that M is a left B-hypermodule and T is a left B-subhypermodule of M. Set $P=N \cap T(P \neq \emptyset)$ and define the relation ρ in the following way:

$$
\forall(x, y) \in M^{2}, x \rho y \Leftrightarrow x+P=y+P
$$

Obviously, ρ is an equivalence relation on M. The set M / ρ with the following hyperoperations is an (A, B)-hyperbimodule:

$$
\begin{aligned}
& (x+P) \oplus(y+P)=\{z+P \mid z \in x+y\} \\
& b \otimes(x+P) \odot a=b \times x \cdot a+P
\end{aligned}
$$

for all $a \in A$ and $b \in B$. Clearly, the condition $(b m) a=b(m a)$ holds for all $m \in M / \rho$.
The relation β was introduced by Koskas [14] and studied mainly by Corsini [6] and Freni [12, 13], and many others. Vougiouklis defined the relation γ on hyperrings.

Definition 1.2 ([17]). Let R be a hyperring. We define the relation γ as follows:
$x \gamma y$ if and only if there exist $n \in \mathbb{N},\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ and $\left(x_{i 1}, \ldots, x_{i k_{i}}\right) \in R^{k_{i}}$ such that

$$
x, y \in \sum_{i=1}^{n}\left(\prod_{j=1}^{k_{i}} x_{i j}\right)
$$

The relation γ is reflexive and symmetric. Let γ^{*} be the transitive closure of γ. Then the relation γ is the smallest strongly regular relation such that the quotient R / γ^{*} is a ring.

The following definition for the first time is introduced by Vougiouklis. We refer the readers to [18].

Definition 1.3 ([18]). Let R be a hyperring and M be a hypermodule over R. The relation ϵ is defined as follows:

$$
\begin{gathered}
x \epsilon y \Leftrightarrow \exists n \in \mathbb{N}, \exists\left(m_{1}, \ldots, m_{n}\right) \in M^{n}, \exists\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{N}^{n}, \\
\exists\left(x_{i 1}, x_{i 2}, \ldots, x_{i k_{i}}\right) \in R^{k_{i}},
\end{gathered}
$$

such that

$$
x, y \in \sum_{i=1}^{n} m_{i}^{\prime} ; \quad m_{i}^{\prime}=m_{i} \quad \text { or } \quad m_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} x_{i j k}\right) m_{i} .
$$

The relation ϵ is reflexive and symmetric. Let ϵ^{*} be the transitive closure of ϵ. Then ϵ^{*} is a strongly regular relation both on $(M,+)$ and M as an R-hyper module. Also, the (abelian group) M / ϵ^{*} is an R / γ^{*} - module, where R / γ^{*} is a ring and the relation ϵ^{*} is the smallest equivalence relation such that the quotient M / ϵ^{*} is an R / γ^{*} - module.

If M is an R-hyper module, then we set

$$
\epsilon_{0}=\{(m, m) \mid m \in M\}
$$

and for every integer $n \geq 1, \epsilon_{n}$ is the relation defined as follows:

$$
x \epsilon_{n} y \Leftrightarrow x, y \in \sum_{i=1}^{n} m_{i}^{\prime} .
$$

Obviously, for every $n \geqslant 1$, the relation ϵ_{n} is symmetric, and the relation $\epsilon=\bigcup_{n \geqslant 0} \epsilon_{n}$ is reflexive and symmetric. If M is a hypermodule over a hyperring R and $n \geq 1$ then $\epsilon_{n} \subseteq \epsilon_{n+1}$.

The fundamental relation ω^{*} on M can be defined as the smallest equivalence relation such that the quotient M / ω^{*} be a bimodule over the corresponding fundamental ring such that M / ω^{*} as a group is not abelian [16].

Definition 1.4 ([16]). Let R and S be hyperrings and suppose that M is an (R, S) hyper bi-module. We define the relation ω as follows:
$x \omega y$ if and only if there exist $p \in \mathbb{N},\left(m_{1}, \ldots, m_{p}\right) \in M^{p},\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in$ $\mathbb{N}^{p},\left(k_{i 1}, k_{i 2}, \ldots, k_{i n_{i}}\right) \in \mathbb{N}^{n_{i}}, r_{i j k} \in R,\left(n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{p}^{\prime}\right) \in \mathbb{N}^{p},\left(k_{i 1}^{\prime}, k_{i 2}^{\prime}, \ldots, k_{i n_{i}^{\prime}}^{\prime}\right) \in$
$\mathbb{N}^{n_{i}^{\prime}}, s_{i j k} \in S$, such that

$$
x, y \in \sum_{i=1}^{p} m_{i}^{\prime} \text { when } m_{i}^{\prime}=\left\{\begin{array}{l}
m_{i} \text { or } \\
m_{i}\left(\sum_{j=1}^{n_{i}^{\prime}}\left(\prod_{k=1}^{k_{i j}^{\prime}} s_{i j k}\right)\right) \text { or } \\
\left(\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} r_{i j k}\right)\right) m_{i} \text { or } \\
\left(\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} r_{i j k}\right)\right) m_{i}\left(\sum_{j=1}^{n_{i}^{\prime}}\left(\prod_{k=1}^{k_{i j}^{\prime}} s_{i j k}\right)\right)
\end{array}\right.
$$

The relation ω is reflexive and symmetric. Let ω^{*} be transitive closure of ω.
Lemma $1.5([16]) . \omega^{*}$ is a strongly regular relation on $(M,+)$ and M as an (R, S) hyper bi-module too.

Theorem 1.6 ([16]). The relation ω^{*} is the smallest equivalence relation such that the quotient M / ω^{*} is an $\left(R / \gamma_{R}^{*}, S / \gamma_{S}^{*}\right)$-bi-module.

Definition 1.7 ([16]). Let M be an (R, S)-hyper bi-module. Then we set $\omega_{0}=$ $\{(m, m) \mid m \in M\}$ and for every integer $n \geq 1, \omega_{n}$ is the relation defined as follows:

$$
x \omega_{n} y \Leftrightarrow x \in \sum_{i=1}^{n} m_{i}^{\prime}, \quad y \in \sum_{i=1}^{n} m_{i}^{\prime}
$$

Obviously, for every $n \geqslant 1$, the relation ω_{n} are symmetric, and the relation $\omega=$ $\bigcup_{n \geqslant 0} \omega_{n}$ is reflexive and symmetric.

2. Complete Closure of (R, S)-Hyperbimodules

In this section we find some properties of complete parts of (R, S)-hyperbimodules which are valid in every (R, S)-hyperbimodule. In the following m_{i}^{\prime} is the notation that defined in Definition 1.4

Definition 2.1 ([16]). Let M be an (R, S)-hyperbimodule and A be a non-empty subset of M. We say that A is a complete part of M if for every $n \in \mathbb{N}$, for every and for every $\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$

$$
\sum_{i=1}^{n} m_{i}^{\prime} \cap A \neq \emptyset \Rightarrow \sum_{i=1}^{n} m_{i}^{\prime} \subseteq A
$$

We say an (R, S)-hyperbimodule M is n-complete if $\forall\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$, we have

$$
\omega\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\sum_{i=1}^{n} m_{i}^{\prime}
$$

where $\omega\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)$ is the union of all ω-classes having a non-empty intersection with the set $\sum_{i=1}^{n} m_{i}^{\prime}$.

Lemma 2.2 ([16]). Let M be an (R, S)-hyperbimodule. For every $x, y, a \in M, r \in R$ and $s \in S$, if $x \omega_{n} y$ then

$$
\begin{array}{ll}
\omega_{n}^{*} \subseteq \omega_{n+1}^{*}, \\
(x+a) \overline{\bar{\omega}}_{n+1}(y+a), & (x+a){\overline{\overline{\omega^{*}}}{ }_{n+1}(y+a),}^{(a+x) \overline{\bar{\omega}}_{n+1}(a+y),}(a+x){\overline{\overline{\omega^{*}}}}_{n+1}(a+y), \\
r \cdot a \overline{\bar{\omega}}_{n} r \cdot b, & r \cdot a{\overline{\overline{\omega^{*}}}}_{n} r \cdot b, \\
a \cdot s \overline{\bar{\omega}}_{n} b \cdot s, & a \cdot s{\overline{\bar{\omega}^{*}}}_{n} b \cdot s,
\end{array}
$$

Theorem 2.3. Let M be an R-hyper bi-module and ρ be a strongly regular relation on M. Then $(M / \rho, \oplus)$ is an (R, S)-hyper bi-module if and only if for every $(x, y, z) \in$ M^{3};
(1) $\rho(\rho(\rho(x) \oplus \rho(y)) \oplus \rho(z))=\rho(\rho(x) \oplus \rho(\rho(y) \oplus \rho(z)))$,
(2) for every $r \in R, \quad r . \rho(x)=\rho(r . x)$.

Proof. Let $\bar{x}:=\rho(x)$. It is enough to observe that

$$
\begin{aligned}
(\bar{x} \oplus \bar{y}) \oplus \bar{z} & =\{\bar{u} \mid u \in \rho(x)+\rho(y)\} \oplus \bar{z} \\
& =\{\bar{v} \mid v \in \rho(u)+\rho(z), u \in \rho(x)+\rho(y)\} \\
& =\{\bar{v} \mid v \in(\rho(x)+\rho(y))+\rho(z)\}
\end{aligned}
$$

Analogously, we can write $\bar{x} \oplus(\bar{y} \oplus \bar{z})=\{\bar{w} \mid w \in \rho(x)+(\rho(y)+\rho(z))\}$.
Since ρ is strongly regular, it follows that with the scalar hyperoperation $r \cdot \rho(x):=$ $\rho(r \cdot x)$ we obtain a module, and the properties of M as an R-hyper bi-module, guarantee that the hypergroup M / ρ is an (R, S)-hyper bi-module.

Theorem 2.4. Let M be a hyper bi-module, $\phi_{M}: M \rightarrow M / K$ be the canonical projection. If N is a hyper bi-module and $f: M \rightarrow N$ is an (R, S)-homomorphism, then $g: M / K \rightarrow N$ exists such that $g \phi_{M}=f$.

Proof. It is enough to check that for every $x \in M, g \phi_{M}(x)=f(x)$. First, g is well defined: in fact $\phi_{M}(x)=\phi_{M}(y)$ implies that $x K y$. Since N is a hyper bi-module, it follows that $f(x)=f(y)$. Moreover, g is an (R, S)-homomorphism because for every $x, y \in M$, and $u \in x+y$, we have

$$
\begin{aligned}
g\left(\phi_{M}(x)+\phi_{M}(y)\right) & =g \phi_{M}(x+y)=g \phi_{M}(u)=f(u) \\
& =f(x+y)=f(x)+f(y)=g \phi_{M}(x)+g \phi_{M}(y) .
\end{aligned}
$$

Moreover, for every $r \in R$, and $v \in r \cdot x$ we have

$$
g\left(\phi_{M}(r \cdot x)\right)=g\left(\phi_{M}(v)\right)=f(v)=f(r \cdot x)=r \cdot f(x)=r \cdot\left(g \phi_{M}(x)\right) .
$$

In the similar way, for every $s \in S, g\left(\phi_{M}(x) \cdot s\right)=\left(g \phi_{M}(x)\right) \cdot s$.
Theorem 2.5. If $f: M \rightarrow M^{\prime}$ is an (R, S)-homomorphism, then
(1) for all $x \in M$, we have $f(C(x)) \subseteq C(f(x))$.
(2) f determines an (R, S)-homomorphism $f^{*}: M / K \rightarrow M^{\prime} / K^{\prime}$ defined

$$
f^{*}\left(\phi_{M}(x)\right)=\phi_{M^{\prime}}(f(x)) .
$$

Proof. (1) It is easy to check that for every $n \in \mathbb{N}$, the following implication holds;

$$
x \omega_{n} y \Rightarrow f(x) \omega_{n} f(x) .
$$

(2) f^{*} is well defined, in fact if $\phi_{M}(x)=\phi_{M}(y)$, then $x K y$. Then, we conclude that $f(x) K f(y)$, and so $f^{*} \phi_{M}(x)=f^{*} \phi_{M}(y) . f^{*}$ is an (R, S) homomorphism because for every $u \in x+y$,

$$
\begin{aligned}
f^{*}\left(\phi_{M}(x)+\phi_{M}(y)\right) & =f^{*}\left(\phi_{M}(u)\right)=\phi_{M^{\prime}}(f(u))=\phi_{M^{\prime}}(f(u)) \\
& =\phi_{M^{\prime}}(f(x)+f(y))=\phi_{M^{\prime}}(f(x))+\phi_{M^{\prime}}(f(y)) \\
& =f^{*}\left(\phi_{M}(x)\right)+f^{*}\left(\phi_{M}(y)\right),
\end{aligned}
$$

and for every $r \in R$ and $v \in r \cdot x$, we have

$$
f^{*}\left(\phi_{M}(r \cdot x)\right)=\phi_{M^{\prime}}(f(v))=\phi_{M^{\prime}}(f(r \cdot x))=r \cdot \phi_{M}(f(x))=r \cdot f^{*}\left(\phi_{M}(x)\right) .
$$

Theorem 2.6. An (R, S)-hyperbimodule M is n-complete if and only if for every $\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$ and $z \in \sum_{i=1}^{n} m_{i}^{\prime}$, we have

$$
\omega(z)=\sum_{i=1}^{n} m_{i}^{\prime} .
$$

Proof. Let M be n-complete, and suppose that $z \in \sum_{i=1}^{n} m_{i}^{\prime}$. Then, we have

$$
\omega(z) \subseteq \bigcup_{z \in \sum_{i=1}^{n} m_{i}^{\prime}} \omega(z)=\omega\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\sum_{i=1}^{n} m_{i}^{\prime} .
$$

Hence, we obtain $\omega(z) \subseteq \sum_{i=1}^{n} m_{i}^{\prime}$. Now, if $z \in \sum_{i=1}^{n} m_{i}^{\prime}$, then $\omega(z) \subseteq \sum_{i=1}^{n} m_{i}^{\prime}$. Consequently, if $y \in \sum_{i=1}^{n} m_{i}^{\prime}$, then

$$
z \omega_{n} y \Rightarrow z \omega y \Rightarrow y \in \omega(z) .
$$

Conversely, for every $\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$ and $z \in \sum_{i=1}^{n} m_{i}^{\prime}$, we obtain $\omega(z)=\sum_{i=1}^{n} m_{i}^{\prime}$. Therefore,

$$
\omega\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\bigcup_{z \in \sum_{i=1}^{n} m_{i}^{\prime}} \omega(z)=\sum_{i=1}^{n} m_{i}^{\prime}
$$

and hence M is n-complete.
Theorem 2.7. If M is an n-complete (R, S)-hyperbimodule then for all $\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$, $\sum_{i=1}^{n} m_{i}^{\prime}$ is a complete part of M.

Proof. For every $m \in \mathbb{N}$ and $\left(z_{1}^{\prime}, \ldots, z_{m}^{\prime}\right)$, if $\sum_{i=1}^{m} z_{i}^{\prime} \cap \sum_{i=1}^{n} m_{i}^{\prime} \neq \emptyset$, then there exists $a \in \sum_{i=1}^{m} z_{i}^{\prime} \cap \sum_{i=1}^{n} m_{i}^{\prime}$. Now, for every $y \in \sum_{i=1}^{m} z_{i}^{\prime}$, we have $a \omega_{m} y$, and so $y \in \omega(a)$. Hence, we get $y \in \omega(a)=\sum_{i=1}^{n} m_{i}^{\prime}$. Therefore, we conclude that $\sum_{i=1}^{m} z_{i}^{\prime} \subseteq \sum_{i=1}^{n} m_{i}^{\prime}$.
Proposition 2.8. If M is a n-complete (R, S)-hyperbimodule, then $\omega=\omega_{n}$.
Proof. It is suffices to prove that $\omega \subseteq \omega_{n}$. Suppose that $x \omega y$. Then, there exists $m \in \mathbb{N}, x \omega_{m} y$. If $m \leq n$, then $\omega_{m} \subset \omega_{n}$. If $m>n$, then there exist $\left(m_{1}^{\prime}, \ldots, m_{m}^{\prime}\right)$ such that $x, y \in \sum_{i=1}^{m} m_{i}^{\prime}$. Since $(M,+)$ is a hypergroup, it follows that there exist
$s \in M$ and $x \in \sum_{i=1}^{n-1} m_{i}^{\prime}+s$ such that $y \in \omega(x)=\sum_{i=1}^{n} m_{i}^{\prime}$. Therefore, we obtain $y \in \sum_{i=1}^{n} m_{i}^{\prime}$, and so $x \omega_{n} y$.

Definition 2.9. Let A be a non-empty subset of M. The intersection of the complete parts of M which contain A is called complete closure of A in M. It will be denoted by $C_{M}(A)$.

Theorem 2.10. Let A be a non-empty subset of M. Assume that
(1) $K_{1}(A):=A$,
(2) $K_{n+1}(A):=\left\{x \mid \exists p \in \mathbb{N}, \exists\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right), x \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime} \cap K_{n}(A) \neq \emptyset\right\}$,
(3) $K(A):=\bigcup_{n \geq 1} K_{n}(A)$.

Then $K(A)=C_{M}(A)$.
Proof. It is necessary to prove:
(1) $K(A)$ is a complete part of M,
(2) If $A \subseteq B$ and B is a complete part of M then $K(A) \subseteq B$.

Therefore,
(1) Let $\sum_{i=1}^{p} m_{i}^{\prime} \cap K(A) \neq \emptyset$ then there exists $n \in \mathbb{N}$ such that $\sum_{i=1}^{p} m_{i}^{\prime} \cap K_{n}(A) \neq \emptyset$. For every $y \in \sum_{i=1}^{n} m_{i}^{\prime}$ we have $y \in K_{n+1}(A)$ and $\sum_{i=1}^{n} m_{i}^{\prime} \subseteq K(A)$, and so $K(A)$ is a complete part of M.
(2) We have $A=K_{1}(A) \subseteq B$. Suppose that B is a complete part of M and $K_{n}(A) \subseteq B$. We prove that this implies $K_{n+1}(A) \subseteq B$. For every $z \in K_{n+1}$ there exist $p \in \mathbb{N},\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right)$ such that $z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime} \cap K_{n}(A) \neq \emptyset$. Thus $\sum_{i=1}^{p} m_{i}^{\prime} \cap$ $B \neq \emptyset$, hence $z \in \sum_{i=1}^{p} m_{i}^{\prime} \subseteq B$ and so $K_{n+1}(A) \subseteq B$. \square
Lemma 2.11. The following statements hold:
(1) For all $n \geq 2$ and $m \in M$, we have $K_{n}\left(K_{2}(m)\right)=K_{n+1}(m)$.
(2) If $m \in K_{n}(z)$, then $z \in K_{n}(m)$.

Proof. (1) We can write $K_{2}\left(K_{2}(m)\right):=$

$$
\left\{z \mid \exists p \in \mathbb{N}, \exists\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right): z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime} \cap K_{2}(m) \neq \emptyset\right\}=K_{3}(m)
$$

We now proceed by induction: If $K_{n-1}\left(K_{2}(m)\right)=K_{n}(m)$, then
$K_{n}\left(K_{2}(m)\right):=$
$\left\{z \mid \exists p \in \mathbb{N}, \exists\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right), \exists \sigma \in \mathbb{S}_{p}: z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime} \cap K_{n-1}\left(K_{2}(m)\right) \neq \emptyset\right\}=$
$\left\{z \mid \exists p \in \mathbb{N}, \exists\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right), \exists \sigma \in \mathbb{S}_{p}: z \in \sum_{i=1}^{p} m_{i}^{\prime}, \sum_{i=1}^{p} m_{i}^{\prime} \cap K_{n}(m) \neq \emptyset\right\}=K_{n+1}(m)$.
(2)] We do the proof by mathematical induction. It is clear that $x \in K_{2}(y) \Leftrightarrow$ $y \in K_{2}(x)$. Suppose that $x \in K_{n-1}(y) \Leftrightarrow y \in K_{n-1}(x)$. Let $x \in K_{n}(y)$, then there exist $q \in \mathbb{N},\left(m_{1}^{\prime}, \ldots, m_{q}^{\prime}\right)$ and $\sigma \in \mathbb{S}_{q}$ such that

$$
x \in \sum_{i=1}^{q} m_{i}^{\prime} \text { and } \sum_{i=1}^{q} m_{i}^{\prime} \cap K_{n-1}(y) \neq \emptyset
$$

by this it follows that there exists $v \in \sum_{i=1}^{n} m_{i}^{\prime} \cap K_{n-1}(y)$. Therefore by choosing $\sigma=1, v \in K_{2}(x)$ is obtained. From $v \in K_{n-1}(y)$ we have $y \in K_{n-1}\left(K_{2}(x)\right)=$ $K_{n}(x)$.

Theorem 2.12. The relation $x K y \Leftrightarrow x \in K(\{y\})$ is an equivalence relation.
Proof. We write $C_{M}(x)$ instead of $C_{M}(\{x\})$. Clearly, K is reflexive. Now, let $x K y$ and $y K z$,. If P is a complete part of M and $z \in P$, then $C_{M}(z) \subseteq P, y \in P$ and consequently $x \in C_{M}(y) \subseteq P$. For this reason $x \in C_{M}(z)$ that is $x K z$. The symmetrically of K follows in a direct way from the preceding lemma.

Theorem 2.13. For each (R, S)-hyperbimodule M, if $R \cdot m=M=m \cdot S$, for every $(r, s) \in R \times S$ and $m \in M$, then $K=\omega^{*}$.

Proof. Suppose that $x \omega y$. Then

$$
\exists n \in \mathbb{N}: x \omega y \Rightarrow \exists\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right), x, y \in \sum_{i=1}^{n} m_{i}^{\prime}
$$

Now, we have $\sum_{i=1}^{n} m_{i}^{\prime} \cap\{x\} \neq \emptyset$, and so

$$
x \in K_{2}(y) \Rightarrow x \in C_{M}(y) \Rightarrow x K y \Rightarrow \omega \subseteq K .
$$

For every $(r, s) \in R \times S$ and $m \in M$, we conclude that $\omega^{*} \subseteq K$.
Conversely, if $x K y$, then there exists $n \in \mathbb{N}$ such that $x \in K_{n+1}(y)$. This implies that there exist $m \in \mathbb{N},\left(m_{1}^{\prime 1}, \ldots, m_{m}^{\prime 1}\right)$ such that

$$
x \in \sum_{i=1}^{m} m_{i}^{\prime 1} \text { and } \sum_{i=1}^{m} m_{i}^{\prime 1} \cap K_{n}(y) \neq \emptyset
$$

Thus, there exists $x_{1} \in \sum_{i=1}^{m} m_{i}^{\prime 1} \cap K_{n}(y)$. Consequently, we obtain $x \omega x_{1}$ and $x_{1} \in$ $K_{n}(y)$, and so there exists $\left(m_{1}^{\prime 2}, \ldots, m_{l}^{\prime 2}\right)$ such that

$$
x_{1} \in \sum_{i=1}^{l} m_{i}^{\prime 2}, \sum_{i=1}^{l} m_{i}^{\prime 2} \cap K_{n-1}(y) \neq \emptyset \Rightarrow \exists x_{2} \in \sum_{i=1}^{l} m_{i}^{\prime 2} \cap K_{n-1}(y) \Rightarrow x_{1} \omega x_{2}
$$

So as a consequence one obtains:

$$
\exists x_{n} \in \sum_{i=1}^{s} m_{i}^{\prime n} \cap K_{n-(n-1)}(y) \Rightarrow x_{n} \in K_{1}(y)=\{y\} \Rightarrow x_{n}=y
$$

Therefore, $x \omega x_{1} \ldots \omega x_{n}=y$. This implies that $K \subseteq \omega$. Since $\omega \subseteq \omega^{*}$, it follows that $K \subseteq \omega^{*}$.

Theorem 2.14. If B is a non-empty subset of M, then $C_{M}(B)=\bigcup_{b \in B} C_{M}(b)$.
Proof. It is clear for every $b \in B, C_{M}(b) \subseteq C_{M}(B)$, because every complete part containing B contains $\{b\}$. Therefore, $\bigcup_{b \in B} C_{M}(b) \subseteq C_{M}(B)$. In order to prove the converse remember that $C_{M}(B)=\bigcup_{n \geq 1} K_{n}(B)$, by Theorem 2.10 , one clearly has

$$
K_{1}(B)=B=\bigcup_{b \in B}\{b\}=\bigcup_{b \in B} K_{1}(b)
$$

We demonstrate the theorem by induction. Suppose that it is true for n, that is, $K_{n}(B) \subseteq \bigcup_{b \in B} K_{n}(b)$ and we prove that $K_{n+1}(B) \subseteq \bigcup_{b \in B} K_{n+1}(b)$. If $z \in K_{n+1}(B)$, then there exist $q \in \mathbb{N},\left(m_{1}^{\prime}, \ldots, m_{q}^{\prime}\right), \sigma \in \mathbb{S}_{q}$ such that

$$
z \in \sum_{i=1}^{q} m_{i}^{\prime} \text { and } \sum_{i=1}^{q} m_{i}^{\prime} \cap K_{n}(B) \neq \emptyset
$$

by the hypothesis induction $\sum_{i=1}^{q} m_{i}^{\prime} \cap\left(\bigcup_{b \in B} K_{n}(b)\right) \neq \emptyset$, hence there exists $b^{\prime} \in B$ such that $\sum_{i=1}^{q} m_{i}^{\prime} \cap K_{n}\left(b^{\prime}\right) \neq \emptyset$. Since $z \in \sum_{i=1}^{q} m_{i}^{\prime}$ one gets $z \in K_{n+1}\left(b^{\prime}\right)$ and so one has prove $K_{n+1}(B) \subseteq \bigcup_{b \in B} K_{n+1}(b)$. Therefore, $C_{M}(B) \subseteq \bigcup_{b \in B} C_{M}(b)$.

Corollary 2.15. If A is a complete part of M, then for every $B \in P^{*}(M), A+$ $B, B+A$ are complete parts of M.

Proof. We have: $C_{M}(A+B)=A+B+H(M)=A+H(M)+B=C_{M}(A)+B=$ $A+B$.

Corollary 2.16. Let $A \in P^{*}(M)$. Then, A is a complete part of M if and only if $A+H(M)=A$.

Proof. We have $C_{M}(A)=A+H(M)=A$.
Corollary 2.17. If $A \in P^{*}(M)$, then $H(M)+A=A+H(M)=C_{M}(A)$.

3. ω_{n}^{*}-Complete (R, S)-Hyper Bi-modules

In [3], Davvaz and Anvariyeh studied θ-part and θ-closure of hypermodules. Also, see $[4,5]$.

Definition 3.1. An (R, S)-hyper bi-module M is said to be ω_{n}^{*}-complete (R, S) hyper bi-module if there exists $n \in \mathbb{N} \cup\{0\}$, and n is the smallest integer such that $\omega_{n}^{*}=\omega^{*}$ and $\omega_{n}^{*} \neq \omega_{n-1}^{*}$.

Lemma 3.2. An (R, S)-hyper bi-module M is ω_{0}^{*}-complete if and only if M is an (R, S)-bi-module.

Proof. Suppose that M is an ω_{0}^{*}-complete (R, S)-hyper bi-module. Then $\omega_{0}^{*}=\omega^{*}$, and hence $\omega_{2} \subseteq \omega_{0}$ and $\omega_{1} \subseteq \omega_{0}$. Now, for every $x \in m_{1}+m_{2}$ and $y \in m_{2}+m_{1}$, we have $x \omega_{2} y$, so $x=y$. Also, for every $x, y \in r \cdot m$, or $x, y \in m \cdot s$, we have $x \omega_{1} y$, so $x=y$. Thus, we conclude that $m_{1}+m_{2}=m_{2}+m_{1}, r \cdot m$ and $m \cdot s$ are singleton. Therefore, we conclude that M is an (R, S)-bi-module.

Conversely, if M is an (R, S)-bi-module, then $\sum_{i=1}^{n} m_{i}^{\prime}$ is singleton and $\left|\sum_{i=1}^{n} m_{i}^{\prime}\right|=1$. By the definition, $x \omega_{n} y$ if and only if $x=\sum_{i=1}^{n} m_{i}^{\prime}, y=\sum_{i=1}^{n} m_{i}^{\prime}$, thus $x=y$ and $x \omega_{0} y$.

Corollary 3.3. If M is an ω_{n}^{*}-complete (R, S)-hyper bi-module, then M / ω_{n}^{*} is an $\left(R / \Gamma_{R}^{*}, S / \Gamma_{S}^{*}\right)$-bi-module.

Proposition 3.4. Every finite (R, S)-hyper bi-module is ω_{n}^{*}-complete, for some n.
Proof. Since M is finite, it follows that the succession $\omega_{1}^{*} \subseteq \omega_{2}^{*} \subseteq \ldots$ is stationary. Thus, there exists $n \in \mathbb{N}$ such that $\omega_{n}^{*}=\omega^{*}$ and $\omega_{n}^{*} \neq \omega_{n-1}^{*}$.

Let M be an (R, S)-hyper bi-module and $\pi: M \rightarrow M / \omega^{*}$ be the canonical projection. We set $H(M):=\pi^{-1}\left(0_{M / \omega^{*}}\right)$.

Theorem 3.5. For every non-empty subset A of an (R, S)-hyper bi-module M, we have
(1) $\pi^{-1}(\pi(A))=H(M)+A=A+H(M)$.
(2) If A is a complete part of M, then $\pi^{-1}(\pi(A))=A$.

Proof. (1) For every $x \in H(M)+A$, there exists a pair $(a, b) \in H(M) \times A$ such that $x \in a+b$, so $\pi(x)=\pi(a) \otimes \pi(b)=0_{M / \omega^{*}} \otimes \pi(b)=\pi(b)$. Therefore $x \in \pi^{-1}(\pi(b)) \subseteq$ $\pi^{-1}(\pi(A))$.

Conversely, for every $x \in \pi^{-1}(\pi(A))$, an element $b \in H$ exists such that $\pi(x)=$ $\pi(b)$. By the reproducibility, there is $a \in M$ such that $x \in a+b$, and so $\pi(b)=$ $\pi(x)=\pi(a) \otimes \pi(b)$. This implies that $\pi(a)=0_{M / \omega^{*}}$ and $a \in \pi^{-1}\left(0_{M / \omega^{*}}\right)=H(M)$. Therefore, we have $x \in a+b \subseteq H(M)+A$. This shows that $\pi^{-1}(\pi(A))=H(M)+A$. In the same way, we can prove that $\pi^{-1}(\pi(A))=A+H(M)$.
(2) It is obvious that $A \subseteq \pi^{-1}(\pi(A))$. Moreover, if $x \in \pi^{-1}(\pi(A))$, then there exists an element $b \in A$ such that $\pi(x)=\pi(b)$. Since A is a complete part, it follows that $x \in \omega^{*}(x)=\omega^{*}(b) \subseteq A$ and therefore $\pi^{-1}(\pi(A)) \subseteq A$.

Theorem 3.6. We have
(1) If for every $(v, w) \in H(M)^{2}, v \omega_{n} w$, then $\omega=\omega_{n+1}$
(2) If for every $(v, w) \in H(M)^{2}, v \omega_{n}^{*} w$, then $\omega=\omega_{n+1}^{*}$.

Proof. (1) If $x \omega y$, since $H(M)+M=M+H(M)=M$, then there exists $(v, w) \in$ $H(M)^{2}$ such that $y \in x+v$ and $y \in x+w$. By hypothesis $v \omega_{n} w$. Now, using Lemma 2.2, we have $(x+v) \overline{\bar{\omega}}_{n+1}(x+w)$, whence $x \omega_{n+1} y$, and so $\omega \subseteq \omega_{n+1}$.
(2) The result follows from (1) and Lemma 2.2.

Corollary 3.7. If $v \omega_{n}^{*} w$, for every $(v, w) \in H(M)^{2}$, and there exists $\left(u^{\prime}, w^{\prime}\right) \in$ $H(M)^{2}$ such that $\left(u^{\prime}, w^{\prime}\right) \notin \omega_{n-1}^{*}$, then M is ω_{n}^{*}-complete or ω_{n+1}^{*}-complete.

4. Complete (R, S)-hyper Bi-modules

In this section, we present an important class of (R, S)-hyper bi-module: complete (R, S)-hyper bi-modules. We investigate some interesting properties of this class of (R, S)-hyper bi-module, for instance we show that any complete (R, S)-hyper bimodule has at least an identity and any element has an inverse.

If M is an (R, S)-hyper bi-module and A is a non-empty subset of M, then we recall the complete closure of A by $C(A)$.

Theorem 4.1. Let M be an (R, S)-hyper bi-module. The following conditions are equivalent
(1) for all $n \geq 1, m_{1}^{\prime}, \ldots, m_{n}^{\prime}$ and for all $a \in \sum_{i=1}^{n} m_{i}^{\prime}, C(a)=\sum_{i=1}^{n} m_{i}^{\prime}$,
(2) for all $m_{1}^{\prime}, \ldots, m_{n}^{\prime}, C\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\sum_{i=1}^{n} m_{i}^{\prime}$,

Proof. $(1 \Rightarrow 2)$: We have $C\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\bigcup_{n} C(a)=\sum_{i=1}^{n} m_{i}^{\prime}$.

$$
a \in \sum_{i=1}^{n} m_{i}^{\prime}
$$

$(2 \Rightarrow 1)$: From $a \in \sum_{i=1}^{n} m_{i}^{\prime}$, we obtain $C(a) \subseteq C\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\sum_{i=1}^{n} m_{i}^{\prime}$. This means that $C(a) \cap \sum_{i=1}^{n} m_{i}^{\prime} \neq \emptyset$, whence $\sum_{i=1}^{n} m_{i}^{\prime} \subseteq C(a)$. Therefore, $C(a)=\sum_{i=1}^{n} m_{i}^{\prime}$.

Definition 4.2. An (R, S)-hyper bi-module is complete if it satisfies one of the above equivalent conditions.

Example 7. Suppose that $R=\{x, y\}$. Then $(R,+, \cdot)$ is a hyperring, where

+	x	y
x	x	y
y	y	x

\cdot	x	y
x	R	R
y	R	R

If we consider R as a (R, R)-hyper bi-module, then it is easy to check that the condition (2) of Theorem 4.1 is satisfied. Therefore, R is complete.

Corollary 4.3. If M is a complete (R, S)-hyper bi-module, then either there exist $m_{1}^{\prime}, \ldots, m_{n}^{\prime}$ such that $\omega^{*}(x)=\sum_{i=1}^{n} m_{i}^{\prime}$.

Theorem 4.4. If M is a complete (R, S)-hyper bi-module, then
(1) $H(M)=\{e \in M: \forall x \in M, x \in x+e \cap e+x\}$, which means that H is the set of two-sided identities of H.
(2) $(M,+)$ has at least an identity and any element has an inverse and reversible

Proof. (1) If $u \in H(M)$, then for all $m \in M$, we have $m \in C(m)=m+H(M)=$ $m+u$. Similarly we have $m u+m$, which means that u is a two-sided identity of M.

Conversely, any two-sided identity u of M is an element of $H(M)$, since $\pi(u)=0$.
(2) Let a, b, c be elements of M and e be a two-sided identity, such that $e \in$ $b+a \cap a+c$. Then, $b+a=H(M)=a+c$ and $a+b \subseteq a+b+c \subseteq a+H(M)+c=$ $H(M)+a+c=H(M)$, hence $a+b=H(M)$, so b is an inverse of a. Moreover, if $a \in u+v$, then $H(M)=b+a \subseteq b+u+v$, so for any inverse v^{\prime} of v, we have $v^{\prime} \in H(M)+v^{\prime} \subseteq b+u v v^{\prime}=b+u+H(M)=b+u$. Similarly, from here we obtain $u^{\prime} \in v+b$, and so $u^{\prime}+a \subseteq v+b+a=C(v)$, whence $v \subseteq C(v)=u^{\prime}+a$. In a similar way, we obtain $u a v^{\prime}$.

Definition 4.5. An (R, S)-hyper bi-module is called flat if for all subhyper bimodule K of M, we have $H(K)=H(M) \cap K$.

Example 8. Let $R=\{0,1,2,3\}$ be a set together with the hyperoperation + and the binary operation \cdot defined as follows:

+	0	1	2	3
0	0	1	2	3
1	1	0	2	3
2	2	2	$\{0,2,3\}$	$\{2,3\}$
3	3	3	$\{2,3\}$	$\{0,1,2\}$

and $a \cdot b=0$ for all $a, b \in R$. Then $(R,+, \cdot)$ is a hyperring. According to Example 1, R is an (R, R)-hyper bi-module. Clearly, $\{0\},\{0,1\}$ and R are subhyper bi-modules of R. Since $H(\{0\})=\{0\}, H(\{0,1\})=\{0\}$ and $H(R)=\{0\}$, we conclude that

$$
\begin{aligned}
& H(\{0\})=H(R) \cap\{0\} \\
& H(\{0,1\})=H(R) \cap\{0,1\}, \\
& H(R)=H(R) \cap R .
\end{aligned}
$$

This means that R is a flat (R, R)-hyper bi-module.
Theorem 4.6. Any complete (R, S)-hyper bi-module is flat.
Proof. Let M be a complete (R, S)-hyper bi-module and suppose that K is a subhyper bi-module M. We have

$$
\begin{aligned}
H(M) \cap K & =\{e \in M: \forall x \in M, x \in x+e \cap e+x\} \cap K \\
& =\{e \in K: \forall x \in M, x \in x+e \cap e+x\} \subseteq H(K) .
\end{aligned}
$$

Moreover, we have

$$
y \in C_{K}(x) \Rightarrow y \omega_{K}^{*} x \Rightarrow y \omega_{M}^{*} x \Rightarrow y \in C_{M}(x),
$$

which means that $C_{K}(x) \subseteq C_{M}(x)$. Clearly, $H(M) \cap K \neq \emptyset$. If $x \in H(M) \cap K \subseteq$ $H(K)$, then $C_{K}(x)=H(K), C_{M}(x)=H(M)$. Hence $H(K) \subseteq H(M)$ whence $H(K) \subseteq H(M) \cap K$. Therefore, we have $H(K)=H(M) \cap K$.

Corollary 4.7. If K is a subhyper bi-module of a complete (R, S)-hyper bi-module M, then $H(K)=H(M)$.

Proof. Set $x \in H(M) \cap K$. We have $H(M)=C(x+x)=x+x \subseteq H(M) \cap K$, whence $H(M) \subseteq H(M) \cap K$, then we apply the above theorem. Hence, $H(K)=H(M)$.

Theorem 4.8. Let M and N be two complete (R, S)-hyper bi-modules and $f: M \rightarrow$ N be a good homomorphism. Then we have $f(H(M))=H(N)$.

Proof. Let $x \in H(M)$. Then $x+x=H(M)$, whence $f(x)+f(x)=f(H(M))$. On the other hand, $f(x)$ is an identity of N, since x is an identity of M, which means that $f(x) \in H(N)$. Therefore, $H(N)=f(x)+f(x)=f(H(M))$.

5. Heart of (R, S)-hyperbimodules

In [8], Corsini and Leoreanu investigated the heart of hypergroups. In [1] and [2], Anvariyeh and Davvaz studied the characterizations of hearts of hypermodules,
and established a few results concerning the sequence of heart. In this section, we examine and study the heart of (R, S)-hyper modules.

Theorem 5.1. Let M be an (R, S)-hyper bi-module and B the union of summations of finite numbers of $\sum_{i=1}^{n} m_{i}^{\prime}$, containing at least one right and at least one left identity and be scalar multiplicatively closed. Then $B=H(M)$.

Proof. We set $E_{l}\left(E_{r}\right)$ the set of left (right) identities and $T=\left\{P \in B \mid P \cap E_{l} \neq\right.$ $\left.\emptyset, P \cap E_{r} \neq \emptyset\right\}$. Furthermore, for every $x \in M$, we denote with $i_{l}(x)\left(i_{r}(x)\right)$ the set of left (right) inverses of x. The first, we prove that for every $a \in B, i_{l}(a) \subseteq B \supseteq i_{r}(a)$. Let $a \in M$, then a $\sum_{i=1}^{n} m_{i}^{\prime}=P \in T$ exists such that $a \in P$. If $a^{\prime} \in i_{l}(a), e^{\prime} \in i_{l}$ exists such that $e^{\prime} \in a^{\prime}+a$; if $a^{\prime \prime} \in i_{l}(a), e^{\prime \prime} \in E_{r}$ exists such that $e^{\prime \prime} \in a+a^{\prime \prime}$. We now consider the $P_{1}=a^{\prime}+\sum_{i=1}^{n} m_{i}^{\prime}+a+a^{\prime \prime}$, we have $P_{1} \subseteq T$, in fact $\left\{e^{\prime}, e^{\prime \prime}\right\} \subseteq e^{\prime}+e^{\prime \prime} \subseteq$ $a^{\prime}+a+a+a^{\prime \prime} \subseteq P_{1}$. Furthermore, $\left\{a^{\prime}, a^{\prime \prime}\right\} \subseteq P_{1}$; in fact $a^{\prime}+a+a^{\prime \prime} \subseteq P_{1}$ and $a^{\prime} \in a^{\prime}+e^{\prime \prime} \subseteq a^{\prime}+a+a^{\prime \prime}$, also $a^{\prime \prime} \in e^{\prime}+a^{\prime \prime} \subseteq a^{\prime}+a+a^{\prime \prime}$.

Now, we prove that B is a complete part of M. Let $a \in \sum_{i=1}^{n} m_{i}^{\prime} \cap B \neq \emptyset$, hence there exists $\sum_{i=1}^{t} z_{i}^{\prime}=P \in T$ such that $a \in P$. Now let $e^{\prime}, e^{\prime \prime}$ be the left and right identities, respectively. We have $a^{\prime}, a^{\prime \prime} \in M$ such that $e^{\prime} \in a^{\prime}+a, e^{\prime \prime} \in a+a^{\prime \prime}$. Then $\sum_{i=1}^{n} m_{i}^{\prime} \subseteq e^{\prime}+\sum_{i=1}^{n} m_{i}^{\prime}+e^{\prime \prime} \subseteq a^{\prime}+a+\sum_{i=1}^{n} m_{i}^{\prime}+a+a^{\prime \prime} \subseteq a^{\prime}+P+\sum_{i=1}^{n} m_{i}^{\prime}+P+a^{\prime \prime} \supseteq$ $a^{\prime}+a+a+a^{\prime \prime} \supseteq\left\{e^{\prime}, e^{\prime \prime}\right\}$, thus $a^{\prime}+P+\sum_{i=1}^{n} m_{i}^{\prime}+P+a^{\prime \prime}=P_{1}$. Therefore $\sum_{i=1}^{n} m_{i}^{\prime} \subseteq P_{1} \in T$ and for this reason $\sum_{i=1}^{n} m_{i}^{\prime} \subseteq B$.

Let $a, b \in M$, such that $a \in P, b \in Q$ where $P, Q \in T$. Then $a+b \in B$. Also, for every $(r, s) \in R \times S, r \cdot a \subseteq B$ and $a \cdot s \subseteq B$.

Furthermore, B satisfies the conditions of reproducibility. Since M is an (R, S) hyper bi-module, the properties of M as an (R, S)-hyperbimodule, guarantee that the hypergroup B is an (R, S)-hyper bi-module. It is clear that $B \subseteq H(M)$. As seen from the above, it turns out that B is a complete part subhyper bi-module, thus $H(M) \subseteq B$.

We denote $\sum_{C}(A)$ the set hypersums A of elements of M such that $C(A)=A$.
Theorem 5.2. If M is an (R, S)-hyper bi-module and $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ such that $\sum_{i=1}^{n} x_{i}^{\prime} \in$ $\sum_{C}(M)$, then there exists $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ such that $\sum_{i=1}^{n} x_{i}^{\prime}+\sum_{i=1}^{n} y_{i}^{\prime}=H(M)$.

Proof. We set $x_{i}^{\prime}=\sum_{j=1}^{n_{i}}\left(\prod_{k=1}^{k_{i j}} r_{i j k}\right) x_{i}$. For $1 \leq t \leq n$, let a_{t} be an element of $H(M)$. Then, there exists $y_{t} \in M$ such that $a_{t} \in x_{t}+y_{t}$, and hence

$$
\sum_{j=1}^{n_{t}} \prod_{k=1}^{k_{t j}} r_{t j k} a_{t} \subseteq \sum_{j=1}^{n_{t}} \prod_{k=1}^{k_{t j}} r_{t j k} x_{t}+\sum_{j=1}^{n_{t}} \prod_{k=1}^{k_{t j}} r_{t j k} y_{t}=x_{t}^{\prime}+y_{t}^{\prime}
$$

Since $H(M)$ is a complete part, it follows that $x_{t}^{\prime}+y_{t}^{\prime} \subseteq H(M)$. Therefore

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i}^{\prime}+y_{n}^{\prime} & =H(M)+\sum_{i=1}^{n} x_{i}^{\prime}+y_{n}^{\prime}=\sum_{i=1}^{n-1} x_{i}^{\prime}+H(M)+x_{n}^{\prime}+y_{n}^{\prime} \\
& =\sum_{i=1}^{n-1} x_{i}^{\prime}+H(M)=H(M)+\sum_{i=1}^{n-1} x_{i}^{\prime}
\end{aligned}
$$

and so

$$
\sum_{i=1}^{n} x_{i}^{\prime}+y_{n}^{\prime}+y_{n-1}^{\prime}=H(M)+\sum_{i=1}^{n-2} x_{i}^{\prime}+x_{n-1}^{\prime}+y_{n-1}^{\prime}=H(M)+\sum_{i=1}^{n-2} x_{i}^{\prime}
$$

Going on the same way one arrives to

$$
\sum_{i=1}^{n} x_{i}^{\prime}+\sum_{i=1}^{n} y_{i}^{\prime}=H(M)+x_{1}^{\prime}+y_{1}^{\prime}=H(M)
$$

Lemma 5.3. Let $(M,+)$ be an (R, S)-hyper bi-module, then
(1) $M-H(M)$ is a complete part of M.
(2) If $M-H(M)$ is a hypersum, then $H(M)$ is also a hypersum.

Proof. (1) It is straightforward.
(2) For (1), $M-H(M)$ is a complete part. Now by using Theorem 3.2, the proof is completed.

Remark 1. Let M be an (R, S)-hyper bi-module endowed with a complete hypersum. The following implication is satisfied for every $A \in P^{*}(M)$:

$$
A \cap \sum_{i=1}^{n} m_{i}^{\prime}=\emptyset \Rightarrow C(A) \cap \sum_{i=1}^{n} m_{i}^{\prime}=\emptyset .
$$

Assume that $z \in C(A) \cap \sum_{i=1}^{n} m_{i}^{\prime}$, then $a \in A$ exists such that $z \in C(a)$, hence $C(a)=C(z)$. The hypothesis $\sum_{i=1}^{n} m_{i}^{\prime}=C\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)$ implies

$$
C(z) \subseteq \bigcup_{y \in \sum_{i=1}^{n} m_{i}^{\prime}} C(y)=C\left(\sum_{i=1}^{n} m_{i}^{\prime}\right)=\sum_{i=1}^{n} m_{i}^{\prime} .
$$

Therefore $a \in A, a \in C(z) \subseteq \sum_{i=1}^{n} m_{i}^{\prime}$, where $\sum_{i=1}^{n} m_{i}^{\prime} \cap A \neq \emptyset$ which absurd.
Let $(M,+)$ be an (R, S)-hyper bi-module. Let's consider the sequence

$$
\begin{equation*}
\left.M \supseteq H(M)=H_{1} \supseteq H(H(M))\right)=H_{2} \supseteq \ldots \supseteq H_{k} \supseteq H_{k+1} \supseteq \ldots \supseteq H_{n} \supseteq \ldots \tag{*}
\end{equation*}
$$

Proposition 5.4. Let M be an (R, S)-hyper bi-module. Then the following conditions are equivalent:
(1) The sequence (*) is finite;
(2) there is $(n, k) \in \mathbb{N}^{2}$, where $n>k+1$, such that H_{n} is a complete part of H_{k};
3) there is $(n, k) \in \mathbb{N}^{2}$ where $n>k+1$, such that for any $(x, y) \in\left(H_{k}-H_{n}\right) \times$ $\left(H_{k}-H_{n}\right) ;(x+y) \cap\left(H_{k}-H_{n}\right) \neq \emptyset$ implies $x+y \subseteq H_{k}-H_{n}$;
(4) there is $(n, k) \in \mathbb{N}^{2}$, where $n>k+1$, such that for any H_{n} is an ω_{n} conjugable.

Proof. $(1 \Rightarrow 2)$ If the sequence $(*)$ is finite, then there is $n \in \mathbb{N}$ such that $H_{n}=H_{n-1}$, hence H_{n-2} is a complete part of H_{n}.
$(2 \Rightarrow 3)$ If H_{n} is a complete part of H_{k}, then $H_{k}-H_{n}$ is a complete part of H_{k}.
$(3 \Rightarrow 4)$ Ones proves easily that for any $s \in \mathbb{N}, H_{s}$ is a closed subhyperbimodule of M. Moreover, for all $a, b \in H_{k}$, if $\{a, b\} \subseteq H_{k}-H_{n}$, we have $a+b \subseteq H_{n}$, if $a \neq b$ and $\left|\{a, b\} \cap H_{n}\right|=1$, we have $a+b \subseteq H_{k}-H_{n}$. Then, we obtain that H_{n} is H_{k}-conjugable.
(4 $\Rightarrow 1$) We know H_{n} is a complete part subhyperbimodule of H_{k}. Hence $H_{k+1}=$ $H\left(H_{k}\right) \subseteq H_{n} \subseteq H_{k+1}$ from which $H_{n}=H_{k+1}$. So, we have: $H_{n+1}=H\left(H_{n}\right)=$ $H\left(H_{k+1}\right)=H_{k+2} \supseteq H_{n}=H_{k+1} \supseteq H_{k+2}$. Therefore, $H_{n}=H_{k+2}=H_{n+1}$. Let $H_{n+s}=H_{k+1}$. It follows $H_{n+s+1}=H\left(H_{n+s}\right)=H_{k+1}=H_{k+2}=H_{k+1}$. Then, for any m such that $m \geq n$, we have $H(M)=H_{n}$.

Theorem 5.5. Let $(M,+)$ be an (R, S)-hyper bi-module such that the sequence (*) is finite, and let N be a complete part subhyper bi-module of M. Then there is $p \in \mathbb{N}$ such that $H_{p+1}(N)=H_{p+1}(M)$.

Proof. Let's remark that $H(N)$ is a subhyper bi-module of $H(M)$. Indeed, for any $a \in H(K)$, there is $e \in N$ such that $a \in a+e$, it's clear that $a \in \omega_{K}(e) \subseteq \omega_{M}(e)=$ $H(M)$. Moreover, since N is a complete part subhyper bi-module of M, we have $H(M) \subseteq N$. Then $H_{1}(N) \subseteq H_{1}(M) \subseteq N$. For any $s \geq 1$, from $H_{s}(N) \subseteq H_{s}(M) \subseteq$ $H_{s-1}(N)$, one obtains $H_{s+1}(N) \subseteq H_{s+1}(M) \subseteq H_{s}(N)$, and hence $N \supseteq H_{1}(M) \supseteq$ $H_{1}(N) \supseteq H_{2}(M) \supseteq H_{2}(N) \supseteq \ldots$.

By Theorem 5.4, there is $(n, p) \in \mathbb{N} \times \mathbb{N}$, where $n>p+1$, such that $H_{n}(M)=$ $H_{p+1}(M)$, therefore $H_{p+1}(M)=H_{p+1}(N)$.

Remark 2. If N_{1}, N_{2} are subhyperbimodules of M, then

$$
H\left(N_{1} \cap N_{2}\right) \leq H\left(N_{1}\right) \cap H\left(N_{2}\right) .
$$

Proposition 5.6. If $N_{1}, N_{2} \leq M$, where M has a finite sequence (*), then there exists $p \in \mathbb{N}$, such that $H_{p+1}\left(N_{1} \cap N_{2}\right)=H_{p+1}\left(H\left(N_{1}\right) \cap H\left(N_{2}\right)\right)$.

Proof. Let's consider $\bar{M}:=N_{1} \cap N_{2}$ and $\bar{N}:=H\left(N_{1}\right) \cap H\left(N_{2}\right)$. Then \bar{N} is a subhyperbimodule, complete part of \bar{M}. (We can verify this using the definition of a complete part.) Now, we can use the proof of Theorem 5.5.

Also, we can give a relation for (R, S)-subhyper bi-module of M :
$\exists p \in \mathbb{N}, \quad H_{p+1}\left(N_{1} \cap N_{2} \cap \ldots \cap N_{m}\right)=H_{p+1}\left(H\left(N_{1}\right) \cap H\left(N_{2}\right) \cap \ldots \cap H\left(N_{m}\right)\right)$.
Remark 3. If $N_{1}, N_{2} \leq M$, then

$$
H\left(N_{1}\right) \subseteq N_{1} \cap H\left(\left\langle N_{1} \cup N_{2}\right\rangle\right) .
$$

Generally, we have not equality. Let M_{1} and M_{2} be two (R, S)-hyper bi-modules. Let m_{1}, n_{1} arbitrary in M_{1} and m_{2}, n_{2} arbitrary in M_{2}. Let's define on $M=M_{1} \cup M_{2} \cup\{a\}$
($a \notin M_{1} \cup M_{2}$) with the following hyperoperations:

$+^{\prime}$	m_{1}	a	m_{2}
n_{1}	$n_{1}+m_{1}$	a	M
a	a	M_{1}	M
n_{2}	M	M	$n_{2}+m_{2}$

and for every $(r, s) \in R \times S, x \in M_{1}$ and $y \in M_{2}$ scalar multiplication

$$
r!^{\prime} x=r \cdot{ }_{1} x, \quad r!^{\prime} y=r \cdot \cdot_{2} y x!^{\prime} s=x \cdot{ }_{1} s, \quad y!^{\prime} s=y \cdot \cdot_{2} s
$$

and $r!^{\prime} a=a!^{\prime} s=a$. We can easily verify ($M,+^{\prime}$) with scalar multiplication ${ }^{\prime}$ is an (R, S)-hyper bi-module. We consider subhyper bi-modules $N_{1}=M \cup\{a\}, N_{2}=$ $M_{2}, \quad N_{1} \cup N_{2}=M,\left\langle N_{1} \cup N_{2}\right\rangle=M$, then $H\left(\left\langle N_{1} \cup N_{2}\right\rangle\right)=M$. So

$$
H\left(N_{1}\right)=M_{1} \varsubsetneqq N_{1} \cap H\left(\left\langle N_{1} \cup N_{2}\right\rangle\right)=N_{1}=M_{1} \cup\{a\} .
$$

Theorem 5.7. Let M be an (R, S)-hyper bi-module and N_{1}, N_{2} be two subhyper bimodule of M. If for every $a \in\left\langle N_{1} \cup N_{2}\right\rangle-\left(N_{1} \cup N_{2}\right)$, there exists $\left(n_{1}, n_{2}\right) \in N_{1} \times N_{2}$, such that $a \in n_{1}+n_{2}$ and if $\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle$ is a closed subhyper bi-module of $H\left(\left\langle N_{1} \cup N_{2}\right\rangle\right)$ then $\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle=H\left(\left\langle N_{1} \cup N_{2}\right\rangle\right)$.

Proof. We shall prove that $\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle$ is conjugable in $\left\langle N_{1} \cup N_{2}\right\rangle$ as hyper bi-module. $\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle$ is closed in $\left\langle N_{1} \cup N_{2}\right\rangle$ because, from $a \in b+x$, where $(a, b) \in\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle^{2}$ and $x \in\left\langle N_{1} \cup N_{2}\right\rangle$, it results $(a, b) \in\left(H^{2}\left\langle N_{1} \cup N_{2}\right\rangle\right)$ and so $x \in H\left(\left\langle N_{1} \cup N_{2}\right\rangle\right)$. Using now the condition given in the proposition, $x \in$ $\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle$.

As regards an arbitrary element $a \in\left\langle N_{1} \cup N_{2}\right\rangle$, we have three situation:

$$
\begin{aligned}
& a \in N_{1} \Rightarrow \exists a^{\prime} \in N_{1}, a+a^{\prime} \subseteq H\left(N_{1}\right) \subseteq\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle ; \\
& a \in N_{2} \Rightarrow \exists a^{\prime} \in N_{2}, a+a^{\prime} \subseteq H\left(N_{2}\right) \subseteq\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle ; \\
& a \in\left\langle N_{1} \cup N_{2}\right\rangle-\left(N_{1} \cup N_{2}\right) \Rightarrow \exists n_{1} \in N_{1}, \exists n_{2} \in N_{2}, a \in n_{1}+n_{2} .
\end{aligned}
$$

For n_{i} there exists $n_{i}^{\prime} \in N_{i}$, such that $n_{i}+n_{i}^{\prime} \in H_{n_{i}}, i=1,2$.
So, $a+n_{1}^{\prime}+n_{2}^{\prime} \subseteq\left(n_{1}^{\prime}+n_{2}^{\prime}\right)+\left(n_{2}+n_{2}^{\prime}\right) \subseteq H\left(N_{1}\right) \oplus H\left(N_{2}\right) \subseteq\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle$, whence for every $t \in n_{1}^{\prime}+n_{2}^{\prime}, a+t \subseteq\left\langle H\left(N_{1}\right) \cup H\left(N_{2}\right)\right\rangle$.

An (R, S)-hyper bi-module M is called $1-(R, S)$-hyper bi-module if $H(M)$ is a singleton.

Lemma 5.8. If M is a $1-(R, S)$-hyper bi-module, then M is an ω_{2}^{*}-complete (R, S) hyper bi-module.

Proof. Suppose that $H(M)=\{e\}$. Then for all $m \in M$, we have $m+e=e+m$ and so the classes module ω are $\{e, m\}$. It follows that $\omega=\omega_{2}=\omega_{2}^{*}$.

Theorem 5.9. Let M be a $1-(R, S)$-hyper bi-module and $H(M)=\{e\}$. Then
(1) The ω^{*}-classes are the summations $e+a$, where $a \in M$.
(2) Every (R, S)-subhyper bi-module of M is complete part.
(3) If $\left\{M_{i}\right\}_{i \in I}$ is a family of (R, S)-subhyper bi-module of M, then $\bigcap_{i \in I} M_{i}$ is an (R, S)-subhyper bi-module of M.
(4) The direct product of $1-(R, S)$-hyper bi-modules is a $1-(R, S)$-hyper bimodule.

Proof. (1) It is straightforward.
(2) If N is a subhyper bi-module of M, we have $N \cap W(M) \neq \emptyset$, for this reason $H(M) \subseteq N$, hence $N=N+H(M)$ and therefore N is a complete part.
(3) For (2), for every $i \in I, e \in M_{i}$. We set $M=\bigcap_{i \in I} M_{i}$, hence $M \neq \emptyset$. Then for every $x, y \in M, b \in M$ exist such that $y \in b+x$, but for every $i \in I$, for (2), M_{i} is a closed submodule, thus $b \in M_{i}$. Also, for every $r \in R, m \in M$, we have $r . m \subseteq M$.
(4) Set $N=\prod_{i \in I} N_{i}, m^{\prime}=\left(m_{i}^{\prime}\right)_{i \in I} \in N, e=\left(e_{i}\right)_{i \in I}$. We have $x \omega_{n} e$ if and only if $z^{\prime 1}=\left(z_{i}^{\prime 1}\right)_{i \in I}, z^{\prime 2}=\left(z_{i}^{\prime 2}\right)_{i \in I}, \ldots, z^{\prime n}=\left(z_{i}^{\prime n}\right)_{i \in I}$, exists such that $x, e \in \sum_{i=1}^{n} z^{\prime k}$, that is if and only if for each $i \in I, z_{i}^{\prime}, e_{i} \in \sum_{k=1}^{n} z_{i}^{\prime k}$. Then $z_{i}^{\prime}=\sum_{k=1}^{n} z_{i}^{\prime k}=e_{i}$, from $x=e$, for this reason $H(M)=\{e\}$.

6. Conclusion

The notion of (R, S)-hyper bi-modules is a generalization of hypermodules and bimodules. The heart of an (R, S)-hyper bi-module is the neutral element of the quotient fundamental bi-module. We studied the properties of the heart and complete parts of (R, S)-hyper bi-modules. In particular, we proved that any compact (R, S)-hyper bi-module has at least one identity element.

For future research, we will study the properties of exact sequences of (R, S) hyper bi-modules.

References

1. S.M. Anvariyeh, S. Mirvakili \& B. Davvaz: \mathcal{R}-Parts and modules derived from strongly \mathcal{U}-regular relations on hypermodules. Le Matematiche 72 (2017), 103-121.
2. S.M. Anvariyeh \& B. Davvaz: On the heart of hypermodoules. Mathematica Scandinavica 106 (2010), 39-49.
3. S.M. Anvariyeh \& B. Davvaz: θ-Closure and θ-parts of hypermodules. Algebra Colloq. 18 (2011), 629-638.
4. S.M. Anvariyeh \& B. Davvaz: Strongly transitive geometric spaces associated to hypermodules. J. Algebra 322 (2009), 1340-1359.
5. S.M. Anvariyeh, S. Mirvakili \& B. Davvaz: θ^{*}-Relation on hypermodules and fundamental modules over commutative fundamental rings. Comm. Algebra 36 (2008), 622-631.
6. P. Corsini: Prolegomena of Hypergroup Theory. Aviani Editore, Italy, 1993.
7. P. Corsini \& V. Leoreanu: Applications of Hyperstructure Theory. Advances in Mathematics, Kluwer Academic Publishers, 2003.
8. P. Corsini \& V. Leoreanu: About the heart of a hypergroup. Acta Univ. Carolinae $\mathbf{3 7}$ (1996), 17-28.
9. B. Davvaz \& V. Leoreanu-Fotea: Hyperring Theory and Applications. International Academic Press, USA, 2007.
10. B. Davvaz: Polygroups Theory and Related Systems. USA: World Scientific Publishing Co. Pte. Ltd., 2013.
11. B. Davvaz \& T. Vougioklis: Commutative rings obtained from hyperrings (H_{v}-rings) with α^{*}-relations. Comm. Algebra 35 (2007), 3307-3320.
12. D. Freni: Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory. Comm. Algebra 32 (2004), 969-988.
13. D. Freni: A new characterization of the derived hypergroup via strongly regular equivalences. Comm. Algebra 30 (2002), 3977-3989.
14. M. Koskas: Groupoides, demi-hypergroupes et hypergroupes. J. Math. Pure Appl. 49 (1970), 155-192.
15. F. Marty: Sur une generalization de la notion de groupe. $8^{i e m}$ Congres Math. Scandinaves, Stockholm (1934), 45-49.
16. M. Nooranian \& B. Davvaz: Fundamental relations on hyper bi-modules and characterizations of complete hyper bi-modules. Asian-Eur. J. Math. 15(2) (2022), Paper No. 2250040, 13 pp.
17. T. Vougiouklis: The fundamental relation in hyperrings. The general hyperfield. Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific (1991), 203-211.
18. T. Vougiouklis: Hyperstructures and Their Representations. Hadronic Press, Inc, 115, Palm Harber, USA, 1994.
${ }^{\text {a Professor: Department of Mathematical Sciences, Yazd University, Yazd, Iran }}$ Email address: nooranianm@yahoo.com
${ }^{\text {b }}$ Professor: Department of Mathematical Sciences, Yazd University, Yazd, Iran Email address: davvaz@yazd.ac.ir

[^0]: Received by the editors May 29, 2020. Revised June 19, 2021. Accepted July 13, 2022.
 2010 Mathematics Subject Classification. 20N20, 16 Y 99.
 Key words and phrases. bi-module, (R, S)-hyper bi-module, fundamental relation, complete part. * Corresponding author.

