• Title/Summary/Keyword: R-gene

Search Result 3,842, Processing Time 0.029 seconds

Physiology, genomics and molecular approaches for lmproving abiotic stress tolerance in rice and impacts on poor farmers

  • Ismail, Abdelbagi M.;Kumar, Arivnd;Singh, R.K.;Dixit, Shalabh;Henry, Amelia;Singh, Uma S.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.7-7
    • /
    • 2017
  • Unfavorable weather and soil conditions reduce rice yield and land and water productivity, aggravating existing encounters of poverty and food insecurity. These conditions are foreseen to worsen with climate change and with the unceasing irrational human practices that progressively debilitate productivity despite global appeals for more food. Our understanding of plant responses to abiotic stresses is advancing and is complex, involving numerous critical processes - each controlled by several genetic factors. Knowledge of the physiological and molecular mechanisms involved in signaling, response and adaptation, and in some cases the genes involved, is advancing. Moreover, the genetic diversity being unveiled within cultivated rice and its wild relatives is providing ample resources for trait and gene discovery, and this is being scouted for rice improvement using modern genomics and molecular tools. Development of stress tolerant varieties is now being fast-tracked through the use of DNA markers and advanced breeding strategies. Large numbers of drought, submergence and salt tolerant varieties were commercialized over recent years in South and Southeast Asia and more recently in Africa. These varieties are making significant changes in less favorable areas, transforming lives of smallholder farmers - progress considered incredulous in the past. The stress tolerant varieties are providing assurance to farmers to invest in better management of their crops and the ability to adjust their cropping systems for even higher productivity and more income, sparking changes analogous to that of the first green revolution, which previously benefited only favorable irrigated and rainfed areas. New breeding tools using markers for multiple stresses made it possible to develop more resilient, higher yielding varieties to replace the aging and obsolete varieties still dominating these areas. Varieties with multiple stress tolerances are now becoming available, providing even better security for farmers and lessening their production risks even in areas affected by complex and overlapping stresses. The progress made in these less favorable areas triggered numerous favorable changes at the national and regional levels in several countries in Asia, including adjusting breeding and dissemination strategies to accelerate outreach and enabling changes at higher policy levels, creating a positive environment for faster progress. Exploiting the potential of these less productive areas for food production is inevitable, to meet the escalating global needs for more food and sustained production systems, at times when national resources are shrinking while demand for food is mounting. However, the success in these areas requires concerted efforts to make use of existing genetic resources for crop improvement and establishing effective evaluation networks, seed production systems, and seed delivery systems to ensure faster outreach and transformation.

  • PDF

A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken

  • Jin, S.;Lee, J.H.;Seo, D.W.;Cahyadi, M.;Choi, N.R.;Heo, K.N.;Jo, C.;Park, H.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1555-1561
    • /
    • 2016
  • Shank skin color of Korean native chicken (KNC) shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [$L^*$], redness [$a^*$], and yellowness [$b^*$]) were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL) analyses. We detected a major QTL that affects $b^*$ value (logarithm of odds [LOD] = 47.5, $p=1.60{\times}10^{-49}$) on GGA24 (GGA for Gallus gallus). At the same location, we also detected a QTL that influences $a^*$ value (LOD = 14.2, $p=6.14{\times}10^{-16}$). Additionally, beta-carotene dioxygenase 2 (BCDO2), the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA) and quantitative transmission disequilibrium test (QTDT). Significant associations were detected between BCDO2 g.9367 A>C and $a^*$ ($P_{MGA}=1.69{\times}10^{-28}$; $P_{QTDT}=2.40{\times}10^{-25}$). The strongest associations were between BCDO2 g.9367 A>C and $b^*$ ($P_{MGA}=3.56{\times}10^{-66}$; $P_{QTDT}=1.68{\times}10^{-65}$). However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC.

Polymorphism of Bovine Lymphocyte Antigen DRB3.2 Alleles in Iranian Native Sarabi Cows

  • Pashmi, M.;Ghorashi, S.A.;Salehi, A.R.;Moini, M.;Javanmard, A.;Qanbari, S.;Yadranji-Aghdam, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.775-778
    • /
    • 2006
  • Sarabi cows (n = 136) from the Sarabi Breeding Station were genotyped at bovine lymphocyte antigen (BoLA)-DRB3.2 locus by a genotyping system that used the polymerase chain reaction and restriction fragment length polymorphism. Genomic DNA was extracted from whole blood samples. A two-step polymerase chain reaction was carried out in order to amplify a 284 base-pair fragment of target gene. Nested-PCR products were digested with three restriction endonuclease enzymes RsaI, BstYI and HaeIII. Digested fragments were analyzed by polyacrylamide gel electrophoresis. Twenty-six BoLA-DRB3.2 alleles were identified with frequencies ranging from 0.4 to 15.1%. Six new allele types observed in this study have not been reported previously. Identified alleles include: BoLA-DRB3.$2^*1$, $^*2$, $^*4$, $^*6$, $^*8$, $^*12$, $^*13$, $^*14$, $^*15$, $^*16$, $^*17$, $^*23$, $^*24$, $^*25$, $^*28$, $^*32$, $^*34$, $^*35$, $^*36$, $^*37$, $^*42$, $^*46$, $^*51$, $^*kba$, $^*laa$ and $^*vaa$. Their frequencies were found to be 0.4, 0.4, 0.7, 11.4, 1.1, 1.8, 2.9, 2.2, 4.4, 9.6, 1.1, 13.6, 0.4, 0.4, 1.1, 0.7, 0.4, 6.2, 2.2, 3.7, 1.1, 7.7, 1.5, 15.1, 2.6 and 7.3% respectively. The six most frequent alleles (DRB3.2 $^*6$, $^*16$, $^*23$, $^*46$, $^*kba$ and $^*vaa$) accounted for 64.7% of the alleles in the population of this herd. Numerous studies on this locus, covering different breeds, has revealed the existence of various alleles in this locus, and new investigations have introduced novel alleles. With respect to the high number of the observed alleles in this survey and the novelty of some alleles with no previous record of reporting, it is plausible to conclude that the BoLA-DRB3.2 locus is highly polymorphic in Iranian native Sarabi cows.

The Expression of Genes Related to Egg Production in the Liver of Taiwan Country Chickens

  • Ding, S.T.;Ko, Y.H.;Ou, B.R.;Wang, P.H.;Chen, C.L.;Huang, M.C.;Lee, Y.P.;Lin, E.C.;Chen, C.F.;Lin, H.W.;Cheng, Winston Teng Kuei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • The purpose of this study was to detect expression of genes related to egg production in Taiwan Country chickens by suppression subtractive hybridization. Liver samples of mRNA extraction from two Taiwan Country chicken strains (L2 and B), originated from the same population but with very distinct egg production rates after long-term selection for egg and meat production respectively. Two-way subtraction was performed. The hepatic cDNA from the low egg production chickens (B) was subtracted from the hepatic cDNA from the high egg production strain (L2). The reversed subtraction (L2 from B) was also performed. The resulting differentially expressed gene fragments were cloned and sequenced. We sequenced 288 clones from the forward subtraction and 96 clones from the reverse subtraction. These genes were subjected to further screening to confirm the differential expression between the two genetic breeds of chickens. The apolipoprotein B (apoB) was expressed to a greater extent in the liver of the L2 than in the B line chickens. The 5-aminoimidazole- 4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (PURH) was expressed to a greater extent in the liver of the B than in the L2 strain chickens. We demonstrated that both apoB and PURH were more highly expressed in the liver than that in other tissues (muscle, ovary, and oviduct) in laying Taiwan Country chickens. Taken together, these data suggest that after the selection for egg production, expression of apoB and PURH genes were also changed. Whether the changed expression of these genes is directly related to egg production is not known, but these two genes may be useful markers for egg laying performance in Taiwan Country chickens.

Expression profiles of circular RNAs in sheep skeletal muscle

  • Cao, Yang;You, Shuang;Yao, Yang;Liu, Zhi-Jin;Hazi, Wureli;Li, Cun-Yuan;Zhang, Xiang-Yu;Hou, Xiao-Xu;Wei, Jun-Chang;Li, Xiao-Yue;Wang, Da-Wei;Chen, Chuang-Fu;Zhang, Yun-Feng;Ni, Wei;Hu, Sheng-Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1550-1557
    • /
    • 2018
  • Objective: Circular RNAs (circRNAs) are a newfound class of non-coding RNA in animals and plants. Recent studies have revealed that circRNAs play important roles in cell proliferation, differentiation, autophagy and apoptosis during development. However, there are few reports about muscle development-related circRNAs in livestock. Methods: RNA sequencing analysis was employed to identify and annotate circRNAs from longissimus dorsi of sheep. Reverse transcription followed by real-time quantitative (q) polymerase chain reaction (PCR) analysis verified the presence of these circRNAs. Targetscan7.0 and miRanda were used to analyse the interaction of circRNA-microRNA (miRNA). To investigate the function of circRNAs, an experiment was conducted to perform enrichment analysis hosting genes of circRNAs using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Results: About 75.5 million sequences were obtained from RNA libraries of sheep skeletal muscle. These sequences were mapped to 729 genes in the sheep reference genome. We identified 886 circRNAs, including numerous circular intronic RNAs and exonic circRNAs. Reverse transcription PCR (RT-PCR) and DNA sequencing analysis confirmed the presence of several circRNAs. Real-Time RT-PCR analysis exhibited resistance of sheep circRNAs to RNase R digestion. We found that many circRNAs interacted with muscle-specific miRNAs involved in growth and development of muscle, especially circ776. The GO and KEGG enrichment analysis showed that hosting genes of circRNAs was involved in muscle cell development and signaling pathway. Conclusion: The study provides comprehensive expression profiles of circRNAs in sheep skeletal muscle. Our study offers a large number of circRNAs to facilitate a better understanding of their roles in muscle growth. Meanwhile, we suggested that circ776 could be analyzed in future study.

Comparison of bacterial communities in leachate from decomposing bovine carcasses

  • Yang, Seung Hak;Ahn, Hee Kwon;Kim, Bong Soo;Chang, Sun Sik;Chung, Ki Yong;Lee, Eun Mi;Ki, Kwang Seok;Kwon, Eung Gi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1660-1666
    • /
    • 2017
  • Objective: Burial is associated with environmental effects such as the contamination of ground or surface water with biological materials generated during the decomposition process. Therefore, bacterial communities in leachates originating from the decomposing bovine carcasses were investigated. Methods: To understand the process of bovine (Hanwoo) carcass decomposition, we simulated burial using a lab-scale reactor with a volume of $5.15m^3$. Leachate samples from 3 carcasses were collected using a peristaltic pump once a month for a period of 5 months, and bacterial communities in samples were identified by pyrosequencing of the 16S rRNA gene. Results: We obtained a total of 110,442 reads from the triplicate samples of various sampling time points (total of 15 samples), and found that the phylum Firmicutes was dominant at most sampling times. Differences in the bacterial communities at the various time points were observed among the triplicate samples. The bacterial communities sampled at 4 months showed the most different compositions. The genera Pseudomonas and Psychrobacter in the phylum Proteobacteria were dominant in all of the samples obtained after 3 months. Bacillaceae, Clostridium, and Clostridiales were found to be predominant after 4 months in the leachate from one carcass, whereas Planococcaceae was found to be a dominant in samples obtained at the first and second months from the other two carcasses. The results showed that potentially pathogenic microbes such as Clostridium derived from bovine leachate could dominate the soil environment of a burial site. Conclusion: Our results indicated that the composition of bacterial communities in leachates of a decomposing bovine shifted continuously during the experimental period, with significant changes detected after 4 months of burial.

Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum (감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명)

  • Lee, Ji-Hyun;Seo, Mun-Won;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2012
  • In order to develop environment friendly fungicide for the control of citrus green mold (Penicillium digitatum) using endophytic bacteria, the 21 bacterial isolates were isolated from citrus leaves in seven different orchards in Jeju Province. Among the 21 bacterial isolates, 5 bacterial isolates presented antifungal activity against green mold pathogen P. digitatum. The CB3 isolate, which showed the most strong antagonistic effect, was selected through opposite culture against the pathogen. The rod-shaped, gram-positive bacterium CB3 was identified as Bacillus velezensis based on morphological, physiological characteristics, 16S rDNA, and gyr A gene sequence analysis. The isolate CB3 showed strong antifungal activity against two citrus postharvest pathogen P. digitatum. Citrus fruits were treated by wound inoculation with P. digitatum pathogen, and the control efficacy of CB3 culture broth was 66.7% ($1{\times}10^8$ cfu/ml). In conclusion, The stability of CB3 and its strong antifungal activity also lead us to believe that it has potential for application as an environment friendly biological control agent.

Microbial Floral Dynamics of Chinese Traditional Soybean Paste (Doujiang) and Commercial Soybean Paste

  • Gao, Xiuzhi;Liu, Hui;Yi, Xinxin;Liu, Yiqian;Wang, Xiaodong;Xu, Wensheng;Tong, Qigen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1717-1725
    • /
    • 2013
  • Traditional soybean paste from Shandong Liangshan and Tianyuan Jiangyuan commercial soybean paste were chosen for analysis and comparison of their bacterial and fungal dynamics using denaturing gel gradient electrophoresis and 16S rRNA gene clone libraries. The bacterial diversity results showed that more than 20 types of bacteria were present in traditional Shandong soybean paste during its fermentation process, whereas only six types of bacteria were present in the commercial soybean paste. The predominant bacteria in the Shandong soybean paste were most closely related to Leuconostoc spp., an uncultured bacterium, Lactococcus lactis, Bacillus licheniformis, Bacillus spp., and Citrobacter freundii. The predominant bacteria in the Tianyuan Jiangyuan soybean paste were most closely related to an uncultured bacterium, Bacillus licheniformis, and an uncultured Leuconostoc spp. The fungal diversity results showed that 10 types of fungi were present in the Shandong soybean paste during the fermentation process, with the predominant fungi being most closely related to Geotrichum spp., an uncultured fungal clone, Aspergillus oryzae, and yeast species. The predominant fungus in the commercial soybean paste was Aspergillus oryzae.

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) (안정적 감자 엽록체 형질전환 식물체 생산)

  • Min, Sung-Ran;Jeong, Won-Joong;Park, Ji-Hyun;Lyu, Jae-Il;Lee, Jeong-Hee;Oh, Kwang-Hoon;Chung, Hwa-Jee;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • Chloroplast genetic engineering of higher plants offers several unique advantages compared with nuclear genome transformation, such as high levels of transgene expression, a lack of position effect due to site-specific transgene integration by homologous recombination, multigene engineering in a single transformation event and reducing risks of gene flow via pollen due to maternal inheritance. We established a reproducible chloroplast transformation system of potato using a tobacco specific plastid transformation vector, pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA). Stable transgene integration into chloroplast genomes and the homoplasmic state of the transgenome were confirmed by PCR and Southern blot analyses. Northern, immunoblot analysis, and GFP fluorescence imaging revealed high expression and accumulation of GFP in the plastids of potato leaves. This system would provide new opportunities for genetic improvement and mass production of value added foreign proteins in this crop.