• 제목/요약/키워드: R-Protein

검색결과 3,527건 처리시간 0.03초

TNF-${\alpha}$ Up-regulated the Expression of HuR, a Prognostic Marker for Ovarian Cancer and Hu Syndrome, in BJAB Cells

  • Lee, Kyung-Yeol
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.184-189
    • /
    • 2004
  • Background: Hu syndrome, a neurological disorder, is characterized by the remote effect of small cell lung cancer on the neural degeneration. The suspicious effectors for this disease are anti-Hu autoantibodies or Hu-related CD8+ T lymphocytes. Interestingly, the same effectors have been suggested to act against tumor growth and this phenomenon may represent natural tumor immunity. For these diagnostic and therapeutic reasons, the demand for antibodies against Hu protein is rapidly growing. Methods: Polyclonal and monoclonal antibodies were generated using recombinant HuR protein. Western blot analyses were performed to check the specificity of generated antibodies using various recombinant proteins and cell lysates. Extracellular stimuli for HuR expression had been searched and HuR-associated proteins were isolated from polysome lysates and then separated in a 2-dimensional gel. Results: Polyclonal and monoclonal antibodies against HuR protein were generated and these antibodies showed HuR specificity. Antibodies were also useful to detect and immunoprecipitate endogenous HuR protein in Jurkat and BJAB. This report also revealed that TNF-${\alpha}$ treatment in BJAB up-regulated HuR expression. Lastly, protein profile in HuR-associated mRNAprotein complexes was mapped by 2-dimensional gel electrophoresis. Conclusion: This study reported that new antibodies against HuR protein were successfully generated. Currently, project to develop a diagnostic kit is in process. Also, this report showed that TNF-${\alpha}$ up-regulated HuR expression in BJAB and protein profile associated with HuR protein was mapped.

Overproduction and Operator DNA-Protein Blotting of R100 Mutant MerR from Shigella flexneri

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.250-255
    • /
    • 1994
  • Wild-type and four mutant R100 merR genes were cloned and the proteins overproduced under tac promoter control of pKK223-3. His118Ala, Cys117Ser, Cys126Ser, and wild-type MerR were successfully overproduced although amino-terminal 14 amino acids deletion mutant MerR was not successful. The amount of overproduced wild-type MerR protein as well as other mutant MerR was between 15%-20% of the total protein. The protein was able to be purified up to 95% homogeneity. Specific DNA-protein blotting experiments showed that the 95 bp operator containing DNA fragment could bind to Cys126Ser, His118Ala, and wild- type MerR, but not to Cys117Ser. These results were consistent with the previously reported complementation experiment results that His118Ala, Cys126Ser, and wild-type MerR could repress the mer operon but Cys117Ser could not.

  • PDF

Protective Immunity of Pichia pastoris-Expressed Recombinant Envelope Protein of Japanese Encephalitis Virus

  • Kwon, Woo-Taeg;Lee, Woo-Sik;Park, Pyo-Jam;Park, Tae-Kyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1580-1587
    • /
    • 2012
  • Japanese encephalitis virus (JEV) envelope (E) protein holds great promise for use in the development of a recombinant vaccine. Purified recombinant E (rE) protein may be useful for numerous clinical applications; however, there are limitations in using the Escherichia coli expression system for producing high-quality rE protein. Therefore, in this study, the yeast expression system was used to generate the rE protein. For protein production using the yeast system, the full-length JEV E gene was cloned into Pichia pastoris. SDS-PAGE and immunoblotting analysis demonstrated that the rE protein had a molecular mass of 58 kDa and was glycosylated. The predicted size of the mature unmodified E protein is 53 kDa, suggesting that post-translational modifications resulted in the higher molecular mass. The rE protein was purified to greater than 95% purity using combined ammonium sulfate precipitation and a SP-Sepharose Fast Flow column. This purified rE protein was evaluated for immunogenicity and protective efficacy in mice. The survival rates of mice immunized with the rE protein were significantly increased over that of Hyphantria cunea nuclear polyhedrosis virus E protein (HcE). Our results indicate that the rE protein expressed in the P. pastoris expression system holds great promise for use in the development of a subunit vaccine against JEV.

Antifungal and Plant Growth Promotion Activities of Recombinant Defensin Proteins from the Seed of Korean Radish (Raphanus sativus L.)

  • Hwang, Cher-Won
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.435-441
    • /
    • 2009
  • In the present study, we analyzed the defensin protein deduced from Korean radish (Raphanus sativus L.) seeds.To express the genes in E. coli, we constructed a recombinant expression vector with a defensin gene, named rKRs-AFP gene isolated from Korean radish seeds. Over expressed rKRs-AFP proteins was separated by SDS-PAGE to determine the purity, and protein concentration was determined by the Bradford method. Antifungal activity was assessed by disk assay method against the tested fungi. As a result, when 500 mL of cell culture were disrupted by sonicator, 32.5 mg total proteins were obtained. The purified protein showed a single band on SDS-PAGE with estimated molecular weight about 6 KDa, consistent with the molecular mass calculated from the deduced amino acid sequence. The purified rKRs-AFP protein showed remarkable antifungal activities against several fungi including Aspergillus niger, Botrytis cinerea causing the gray mold disease, and Candida albicans. In field tests using the purified rKRs-AFP protein, the protein showed the reducing activity of disease spot and the mitigating effect of spreading of disease like agrichemicals. The immuno-assay of rKRs-AFP protein showed that the purified protein entirely accumulated at B. cinerea cytoplasm through the hyphal septa shown by fluorescence imaging. There was no fluorescence inside the cell, when the hypha was incubated without the protein. These all results indicate that the recombinant rKRs-AFP proteins can be utilized as a potential antifungal drug to control harmful plant fungal pathogens.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

Role of Helix 8 in Dopamine Receptor Signaling

  • Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.514-521
    • /
    • 2019
  • G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.

Proteomics-driven Identification of Putative AfsR2-target Proteins Stimulating Antibiotic Biosynthesis in Streptomyces lividans

  • Kim Chang-Young;Park Hyun-Joo;Kim Eung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.248-253
    • /
    • 2005
  • AfsR2, originally identified from Streptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression of afsR2 significantly induced antibiotic production as well as the sporulation of S. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-type S. lividans and the afsR2-integrated actinorhodin overproducing strain. The 20 gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these two S. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine penta phosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes in Streptomyces species.

사료급이(oral feeding)에 의한 vaccination을 통한 흰반점바이러스(WSSV)에 대한 재조합단백질 rVP19+28의 백신효능의 확인 (Vaccination of Shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV) by Oral Vaccination of Recombinant Fusion Protein, rVP19+28)

  • 응위엔 호아이;김영진;최미란;김성구
    • 생명과학회지
    • /
    • 제20권8호
    • /
    • pp.1181-1185
    • /
    • 2010
  • 본 연구는 WSSV의 주요 구조단백질인 VP19와 VP28을 모두 포함하는 VP19+28 fusion protein을 제조하여, Litopenaeus vannamei에서 WSSV에 대한 백신으로서의 효능을 평가하고자 수행하였다. VP19와 VP28 유전자를 fusion하여 제작한 VP19+28 유전자를 pET-28a(+) vector에 삽입하고 단일단백질로서 제작된 VP19+28 유전자를 E. coli BL21 (DE3)에서 발현시켰다. 백신실험을 위해 새우에게 2주 동안 실험용 사료를 급이하였으며, 그 후 바이러스액($1{\times}10^2$배로 희석한 WSSV)을 이용하여 새우에게 주사 감염에 의해 in vivo 공격실험(challenge test)을 수행하였다. 실험결과, vaccination을 하지 않은 새우들은 감염 후 11일째에 100%의 누적폐사율을 보였으며, host control로써 E. coli BL21을 사용하여 vaccination한 새우들은 감염 후 17일째에 100%의 누적폐사율을 보였다. rVP19, rVP28, rVP19+28을 이용하여 vaccination한 새우들의 경우 감염 후 21일째에 각각 66.7%, 41.7%, 41.7%의 누적폐사율을 보였다. 이상의 결과를 통해 rVP28과 rVP19+28이 WSSV에 대해 높은 백신효능을 가짐을 확인하였다. 또한 감염 후 21일째에 fusion protein rVP19+28과 rVP28의 누적폐사율은 동일하였지만 공격실험기간 동안 폐사율이 rVP19+28을 투여 한 실험군이 낮게 나타나는 것을 보아 WSSV에 대한 새우의 방어효능은 rVP19+28이 더 높음을 나타내는 것이다.

Huntingtin-interacting protein 1-related is required for accurate congression and segregation of chromosomes

  • Park, Sun-Joo
    • BMB Reports
    • /
    • 제43권12호
    • /
    • pp.795-800
    • /
    • 2010
  • Huntingtin-interacting protein 1-related (HIP1r) is known to function in clathrin-mediated endocytosis and regulation of the actin cytoskeleton, which occurs continuously in non-dividing cells. This study reports a new function for HIP1r in mitosis. Green fluorescent protein-fused HIP1r localizes to the mitotic spindles. Depletion of HIP1r by RNA interference induces misalignment of chromosomes and prolonged mitosis, which is associated with decreased proliferation of HIP1r-deficeint cells. Chromosome misalignment leads to missegregation and ultimately production of multinucleated cells. Depletion of HIP1r causes persistent activation of the spindle checkpoint in misaligned chromosomes. These findings suggest that HIP1r plays an important role in regulating the attachment of spindle microtubules to chromosomes during mitosis, an event that is required for accurate congression and segregation of chromosomes. This finding may provide new insights that improve the understanding of various human diseases involving HIP1r as well as its fusion genes.

Regulation of DREAM Expression by Group I mGluR

  • Lee, Jin-U;Kim, In-Sook;Oh, So-Ra;Ko, Suk-Jin;Lim, Mi-Kyung;Kim, Dong-Goo;Kim, Chul-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권2호
    • /
    • pp.95-100
    • /
    • 2011
  • DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons.