• Title/Summary/Keyword: R/C 전단벽

Search Result 20, Processing Time 0.024 seconds

Identification of Seismic Hysteretic Behavior of R/C Shear Walls (R/C 전단벽의 지진이력 거동에 관한 연구)

  • 오순택
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.162-170
    • /
    • 1993
  • 축력과 횡력을 받는 전단벽의 휨과 전단 거동을 분리산정하기 위하여 R/C 전단벽에 관한 실험 결과에 대해 System Identification을 행한다. 이를 토대로, 전단벽의 강도 저하 계수 'R'과 극한 회전능력을 구하는 실험식을 제안한다. R/C뼈대구조-전단벽에 대한 비탄성 해석 유한요소 컴퓨터 프로그램(IDARC)을 이용하여 전단벽의 지진 이력 거동을 재현한다. Identification 결과를 Digitize한 실험 결과와의 비교에 의해 검증하고, 총변형으로부터 휨과 전단에 의한 변형요소를 해석적으로 분리 함으로서 비탄성 전단 거동과 강도 저하 계수 'R'의 산정이 가능해진다. 또한 실험 결과에 대한 회귀 분석을 통하여 전단벽의 극한 회전 능력에 대한 실험식이 얻어진다.

Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations (한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계)

  • 박문호;조창근;이승기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • The present study is to investigate the ultimate behavior and limit state design of 2-I) R/C structures, with the changing of crack direction, and the yielding of the reinforcing steel bars, and Is to introduce an algorithm for the limit state design and analysis of 2-D R/C structures, directly from the finite element model. For the design of reinforcement in concrete the limit state design equation is incorporated into finite element algorithm to be based on the pointwise elemental ultimate behavior. It is also introduced a simplified nonlinear analysis algorithm for stress-strain relationship of R/C plane stress problem considering the cracking and its rotation in concrete and the yielding of the reinforcing steel bar. The algorithm is incorporated into the nonlinear finite element analysis. The analysis model is compared with the experimental model of R/C shear wall. In a simple design example for a shear wall, the required reinforcement ratios in each finite element is obtained from the limit state design equations.

Hysteretic Behavior of R/C Shear Wall with Various Lateral Reinforcements in Boundary Columns for Cyclic Lateral Load (경계부재내 횡보강근 배근방법에 따른 R/C전단벽의 반복하중에 대한 이력거동)

  • Seo, Soo-Yeon;Oh, Tae-Gun;Kim, Kyeong-Tae;Yoon, Seong-Joe
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.357-366
    • /
    • 2010
  • This paper presents experimental results about shear wall with various lateral reinforcement details in boundary elements. The research objective is to study the structural behavior of shear wall with boundary column confined by rectangular spiral hoops and headed cross ties developed to improve workability in the fabrication of boundary columns. These two details can be fabricated in a factory and put together on-site after being delivered so that the construction work may be reduced. Main parameters in the experimental study were the types of hoop and cross tie: rectangular spiral hoop and headed cross tie vs. standard hoop and cross tie with hook. Four half scaled shear wall specimens with babel shape were made and tested by applying horizontal cyclic load under constant axial force, 10% of nominal compressive strength of concrete. Based on the test result, it was shown that the shear wall with rectangular spiral hoop and headed cross tie in boundary columns has structural capacity compatible with conventional shear wall. The specimen SW-Hh which has bigger hoop bar and higher volumetric ratio of transverse reinforcements than other showed improved energy dissipating characteristic but it presented a rapid reduction of strength after peak point. The results indicates that, it is necessary to consider volumetric ratio of transverse reinforcements as well as hoop space in designing of shear wall with boundary columns for improved strength and ductility.

Hysteretic Behavior Characteristics of R/C Shear Walls Evaluated by Nonlinear Analysis (비선형 해석으로 평가한 전단벽의 이력거동 특성에 관한 연구)

  • 김덕주;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.85-92
    • /
    • 1998
  • Most of tall apartment buildings constructed in our county are wall-type R/C structures composed of hear walls and slabs. It is necessary to evaluate of hysteretic properties of shear walls in wall-type R/C structures which resist lateral loads as well as axial loads. In this study, first to evaluate the wall's hysteretic behavior nonlinear analyses with IDARC 4.0 are performed for eight specimens subjected to horizontal load reversals. As a result of nonlinear analyses of specimens we can obtain three parameters which determined the hysteretic parameters such as stiffness degrading, strength deterioration and inching behavior respectively. With this three parameters, strength and deformation capacity of 5, 10, 20-story shear wall of apartment building is estimated from the results of push-over analysis.

  • PDF

Effect of Edge Confinement on Deformation Capacity in the Isolated R/C Structural Walls (전단벽의 단부보강효과에 따른 변형능력의 평가)

  • 이희동;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.525-528
    • /
    • 1998
  • This paper reports on tests of reinforced concrete shear walls for wall-type apartment structure under axial loads and the cyclic reversal of lateral loads with different confinement of the boundary elements. Confinement of the extreme element by U-stirrups and tie hooks seems to be as effective as closed stirrups. The shear strength capacity seems not to be increased by the confinement but deformation capacity improved.

  • PDF

The Structural Behavior of Reinforced Concrete R/C Couplinging Beams in Wall-Dominant System (벽식구조 아파트에서 전단벽 연결보의 구조적거동)

  • 장극관;천영수;서대원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.411-416
    • /
    • 2001
  • Preliminary experimental results are reported on the response of reversed T type linking reinforced concrete shear wall. Different layouts of coupling beams were tested and stiffness degradation and energy dissipation of coupling beams were evaluated. Diagonally reinforced coupling beams with slab showed larger ductility and larger amount of energy absorption to be attained compared with conventionally reinforced concrete coupled beams.

  • PDF

Development of Frictional Wall Damper and Its Analytical Applications in R/C frame Structures (벽식마찰감쇄기의 개발 및 R/C 골조구조물에의 해석적 적용)

  • 조창근;박문호;권민호;강구수;서상길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.718-725
    • /
    • 2002
  • A wall type friction damper is newly Proposed in this paper to improve the performance of R/C framed structures under earthquake loads. Although traditional dampers are usually placed as bracing members, the application ot bracing-type dampers into R/C structures is not as simple as those of steel structures due to the connection between R/C members and dampers and the stress concentration in connection region. Proposed damper is consisted of Teflon-sheet slider and R/C shear wall. The damper can also avoid stress concentration and reduce P-Δ effect. To evaluate the performance of proposed damper, nonlinear dynamic analyses are carried on 10 story and 3 bay R/C structures with numerical model for the damper. It is shown that the damper reduces the inter-story drifts and the time-historic responses; especially the damper prevents from forming plastic hinges on the lower columns.

Strength and Deformation Capacity of R/C Shear Walls Using High Strength Concrete under Cyclic loads (고강도 콘크리트를 사용한 R/C 전단벽의 강도와 변형능력)

  • 오영훈;윤형도;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.72-77
    • /
    • 1990
  • Results are presented of the cyclic loading tests of there low-rise shear wall assembligies using high strength concrete. The possibilities of achieving an acceptable level of energy dissipation in one story shear walls, mainly by flexural yielding, are examined. Mechanisms of flexural and shear resistance are reviewed with emphasis on aspects of sliding shear. Detrimental effects of sliding shear are demonstrated together with improvement achieved by use of diagonal wall reinforcements. It is postulated that with suitably arranged diagonal wall reinforcements a predominantly flexural response mode with good energy dissipation characteristics can be achieved in low-rise shear walls.

  • PDF

Shear Strength of R/C Shear Walls with Openings (개구부를 갖는 전단벽의 전단강도)

  • 윤현도;최창식;황선경;한병찬;박완신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.223-228
    • /
    • 2003
  • Results of 61 framed reinforced concrete shear walls with openings were reviewed to evaluate the current design provisions for nominal shear strength. Provisions for ACI 318-02 and AIJ Code pertaining to shear design of shear walls evaluated the applicability of shear walls with openings subjected to lateral and vertical loads. Evaluation of test results indicates that the nominal unit shear strength($\Psi$=1.0) calculated using the provisions of ACI and AIJ does not represent the observed shear strength well. Based on the limited database considered in this study, A reasonable lower bound to the shear strength of high-strength concrete shear walls is found to be $1.09\sqrt{f_{cu}}$ kgf/$\textrm{cm}^2$.

  • PDF

The effect of cavity wall property on the shear bond strength test using iris method (Iris 법을 이용한 전단접착강도 측정에서 와동벽의 영향)

  • Kim, Dong-Hwan;Bae, Ji-Hyun;Cho, Byeong-Hoon;Lee, In-Bog;Baek, Seung-Ho;Ryu, Hyun-Mi;Son, Ho-Hyun;Um, Chung-Moon;Kwon, Hyuck-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • Objectives : In the unique metal iris method. the developing interfacial gap at the cavity floor resulting from the cavity wall property during polymerizing composite resin might affect the nominal shear bond strength values. The aim of this study is to evaluate that the iris method reduces the cohesive failure in the substrates and the cavity wall property effects on the shear bond strength tests using iris method. Materials and Methods : The occlusal dentin of 64 extracted human molars were randomly divided into 4 groups to simulate two different levels of cavity wall property (metal and dentin iris) and two different materials ($ONE-STEP^{\circledR}$ and $ALL-BOND^{\circledR}$ 2) for each wall property. After positioning the iris on the dentin surface. composite resin was packed and light-cured. After 24 hours the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Fracture analysis was performed using a microscope and SEM. The data was analyzed statistically by a two-way ANOV A and t-test. Results : The shear bond strength with metal iris was significant higher than those with dentin iris (p=0.034). Using $ONE-STEP^{\circledR}$, the shear bond strength with metal iris was significant higher than those with dentin iris (p=0.005), but not in $ALL-BOND^{\circledR}$ 2 (p=0.774). The incidence of cohesive failure was very lower than other shear bond strength tests that did not use iris method. Conclusions:The iris method may significantly reduce the cohesive failures in the substrates. According to the bonding agent systems. the shear bond strength was affected by the cavity wall property.