• Title/Summary/Keyword: R&D artifacts

Search Result 30, Processing Time 0.024 seconds

Multi-task Architecture for Singe Image Dynamic Blur Restoration and Motion Estimation (단일 영상 비균일 블러 제거를 위한 다중 학습 구조)

  • Jung, Hyungjoo;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Ku yong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1149-1159
    • /
    • 2019
  • We present a novel deep learning architecture for obtaining a latent image from a single blurry image, which contains dynamic motion blurs through object/camera movements. The proposed architecture consists of two sub-modules: blur image restoration and optical flow estimation. The tasks are highly related in that object/camera movements make cause blurry artifacts, whereas they are estimated through optical flow. The ablation study demonstrates that training multi-task architecture simultaneously improves both tasks compared to handling them separately. Objective and subjective evaluations show that our method outperforms the state-of-the-arts deep learning based techniques.

A Study on a Reuse Process of the Embedded Software Artifacts in Defense (국방 분야에서 내장형 소프트웨어 산출물의 재사용 프로세스에 관한 연구)

  • Kim, Young-Gyun;Jin, Yu Suk;Ahn, Hyo-Chul;Kim, Young-Soo
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.597-600
    • /
    • 2010
  • 소프트웨어 재사용(Software Reuse)은 소프트웨어 생산성을 높이는 방법임에도 불구하고 내장형 소프트웨어 개발 분야에서의 적용은 많은 어려움이 있다. 내장형 소프트웨어는 개발된 소프트웨어의 실행환경이 서로 다르고, 하드웨어 의존성이 높기 때문이다. 국방 분야에서의 내장형 소프트웨어는 보안성이라는 특성상 타 프로젝트의 모범사례를 적용하는 데는 정보 공유의 어려움이 있어 왔다. 본 논문에서는 MIL-STD-498에 기반하여 국방 분야의 내장형 소프트웨어 재사용 프로세스에 관해 연구하고 적용 결과를 제시하였다.

Metallugical Study on the Iron Artifaets Ecavated from Buso Sangong (부소산성 출토 고대 철기유물에 대한 금속학적 연구)

  • Im, Seon-Gi;Gang, Dae-Il;Mun, Hwan-Seok;Park, Dong-Gyu;Gang, Seong-Gun
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.37-58
    • /
    • 1992
  • Iron artifacts from Busǒ Sansǒng inffered to late Baikjae periodwere studied on the aspects of metallugy. These materials were the largest size ever since excavated. From the analytical results these artifacts were found to be pureiron system without impurities or hypo-eutectoid steel system in below 0.3% in carbon contents. From the content of phosphorus in the range of 0.03∼0.05% as aim purity it was shown that charcoal were used for making these iron artifacts from sponge iron not fusion method. By observing metallugical structure it was found that iron artifacts was manufactured by repetitive folding and hammering forging method and some by heating method for adding carbon with cool water. This method were to improve the quality of the soften steel to harden one. In addition to those above repetitive hammering method eliminated the nonferrous materials such as slag inclusion and remained relatively pure ferrite.

  • PDF

Methods of Extracting and Providing R&D Documentation Guideline for Licensing Medical Device Software

  • Kim, DongYeop;Lee, Byungjeong;Lee, Jung-Won
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.69-75
    • /
    • 2019
  • The safety and performance of medical device software is managed through life-cycle processes, which represent the entire process of research and development (R&D). The life-cycle process of medical device software is represented by an international standard called IEC 62304, ISO/IEC 12207. In order to license the product, the manufacturer must have document artifacts that comply with the IEC 62304 standard. However, these standards only describe the content of the activity and do not provide a method or procedure for documentation. Therefore, this paper suggests R&D documentation guidelines that assist medical device software developers to have R&D documents conforming to the standards. For this purpose, this study identifies the requirements related to documentation among the requirements existing in the standard and extracts them in the form of guidelines showing only the core information of the requirements. In addition, through the Web framework implemented based on this research, the developer can evaluate whether the technical documents are written in accordance with the R&D document guidelines. Medical device software manufacturers can efficiently produce high-quality research and development documents through R&D documentation guidelines, and they can have standards-compliantresearch and development documentation required for licensing procedures.

Supporting Systematic Software Test Process in R&D Project with Behavioral Models

  • Choi, Hyorin;Lee, Jung-Won;Lee, Byungjeong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.43-48
    • /
    • 2018
  • Various artifacts that are produced as software R&D project progresses contain research plan, research report, software requirements and design descriptions, etc. When conducting a software R&D project, it is necessary to confirm that the developed system has implemented its research requirements well. However, various research results make it difficult to design appropriate tests. So, there is a practical need for us to comprehensively handle the planning, execution, and reporting of software test for finding and verifying information related to the research. In this paper, we propose a useful method for software test process in R&D project which supports model based software testing. The proposed method supports automation of test design and generation of test data by explicitly separating each step of System Under Test (SUT). The method utilizes the various models representing the control flow of the function to extract the information necessary for testing the system. And it supports a systematic testing process based on TMMi and ISO 29119. Finally, we show the validity of the method by implementing a prototype with basic functionality to generate test data from software behavioral models.

Analysis on the Saturation of Grid Artifact and its Reduction in Digital Radiography Images Based on the Adaptive Filtering (디지털 방사선 영상에서 그리드 왜곡의 포화 특성에 관한 연구와 적응 필터링에 기초한 제거)

  • Kim, Dong-Sik;Lee, Sang-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.1-11
    • /
    • 2011
  • In order to obtain more clear x-ray images, an antiscatter grid, which can absorb the scattered rays, is employed. The artifacts due to the grid pattern are, however, visible, and thus should be removed by employing digital filters. For over exposed x-ray images, the strength of the grid artifacts are too big to be removed if fixed-bandwidth filters are employed. In this paper, for an efficient grid artifact reduction, we analyze the characteristics of the image formation and image saturation as the x-ray exposure increases. We can notice that, as the saturation begins to occur, the maximum of the artifact component decreases contrary to increasing exposure amount. We propose then an adaptive filtering algorithm for reduction of the grid artifacts, where the significant-signal bandwidth of the artifact component is used to choose appropriate filter bandwidths. The proposed algorithm is tested for real x-ray digital images, and can efficiently remove the grid artifacts.

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Melodie Mandy;Maiwenn Larnicol;Louis Bordignon;Anis Aouafi;Mihaela Teaca;Thierry Sturel
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2024
  • In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.

JND based Illumination and Color Restoration Using Edge-preserving Filter (JND와 경계 보호 평탄화 필터를 이용한 휘도 및 색상 복원)

  • Han, Hee-Chul;Sohn, Kwan-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.132-145
    • /
    • 2009
  • We present the framework for JND based Illumination and Color Restoration Using Edge-preserving filter for restoring distorted images taken under the arbitrary lighting conditions. The proposed method is effective for appropriate illumination compensation, vivid color restoration, artifacts suppression, automatic parameter estimation, and low computation cost for HW implementation. We show the efficiency of the mean shift filter and sigma filter for illumination compensation with small spread parameter while considering the processing time and removing the artifacts such as HALO and noise amplification. The suggested CRF (color restoration filter) can restore the natural color and correct color distortion artifact more perceptually compared with current solutions. For the automatic processing, the image statistics analysis finds suitable parameter using JND and all constants are pre-defined. We also introduce the ROI-based parameter estimation dealing with small shadow area against spacious well-exposed background in an image for the touch-screen camera. The object evaluation is performed by CMC, CIEde2000, PSNR, SSIM, and 3D CIELAB gamut with state-of-the-art research and existing commercial solutions.

Motion-Compensated Frame Interpolation Using a Parabolic Motion Model and Adaptive Motion Vector Selection

  • Choi, Kang-Sun;Hwang, Min-Chul
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.295-298
    • /
    • 2011
  • We propose a motion-compensated frame interpolation method in which an accurate backward/forward motion vector pair (MVP) is estimated based on a parabolic motion model. A reliability measure for an MVP is also proposed to select the most reliable MVP for each interpolated block. The possibility of deformation of bidirectional corresponding blocks is estimated from the selected MVP. Then, each interpolated block is produced by combining corresponding blocks with the weights based on the possibility of deformation. Experimental results show that the proposed method improves PSNR performance by up to 2.8 dB as compared to conventional methods and achieves higher visual quality without annoying blockiness artifacts.

Fully Analog ECG Baseline Wander Tracking and Removal Circuitry using HPF Based R-peak Detection and Quadratic Interpolation

  • Nazari, Masoud;Rajeoni, Alireza Bagheri;Lee, Kye-Shin
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.231-238
    • /
    • 2020
  • This work presents a fully analog baseline wander tracking and removal circuitry using high-pass filter (HPF) based R-peak detection and quadratic interpolation that does not require digital post processing, thus suitable for compact and low power long-term ECG monitoring devices. The proposed method can effectively track and remove baseline wander in ECG waveforms corrupted by various motion artifacts, whereas minimizing the loss of essential features including the QRS-Complex. The key component for tracking the baseline wander is down sampling the moving average of the corrupted ECG waveform followed by quadratic interpolation, where the R-peak samples that distort the baseline tracking are excluded from the moving average by using a HPF based approach. The proposed circuit is designed using CMOS 0.18-㎛ technology (1.8V supply) with power consumption of 19.1 ㎼ and estimated area of 15.5 ㎟ using a 4th order HPF and quadratic interpolation. Results show SNR improvement of 10 dB after removing the baseline wander from the corrupted ECG waveform.