• Title/Summary/Keyword: Quick Charge

Search Result 44, Processing Time 0.026 seconds

Design and Implementation of Distributed Charge Signal Processing Software for Smart Slow and Quick Electric Vehicle Charge

  • Chang, Tae Uk;Ryu, Young Su;Song, Seul Ki;Kwon, Ki Won;Paik, Jong Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1674-1688
    • /
    • 2019
  • As environmental pollution and fossil fuel energy problems from fuel vehicle have occurred, the interest of electric vehicle(EV) has increased. EV industry and energy industry have grown dynamically in these days. It is expected that the next generation of primary transportation will be EV, and it is necessary to prepare EV infra and efficient energy management such as EV communication protocol, EV charge station, and smart grid. Those EV and energy industry fields are now on growth. Also, the study and development of them are now in progress. In this paper, distributed charge signal processing software for smart slow and quick EV charge is proposed and designed for dealing with EV charge demand. The software consists of smart slow and quick EV charge schedule engine and EV charge power distribution core. The software is designed to support two charge station types. One is normal EV charge station and the other is bus garage EV charge station. Both two types collect the data from EV charge stations, and then analyze the collected data. The software suggests optimized EV charge schedule and deliveries EV charge power distribution information to power switchboard system, and the designed software is implemented on embedded system. It is expected that the software provides efficient EV charge schedule.

Enhancement of Quick-Charge Performance by Fluoroethylene Carbonate additive from the Mitigation of Electrode Fatigue During Normal C-rate Cycling

  • Tae Hyeon Kim;Sang Hyeong Kim;Sung Su Park;Min Su Kang;Sung Soo Kim;Hyun-seung Kim;Goojin Jeong
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2023
  • The quick-charging performance of SiO electrodes is evaluated with a focus on solid electrolyte interphase (SEI)-reinforcing effects. The study reveals that the incorporation of fluoroethylene carbonate (FEC) into the SiO electrode significantly reduced the electrode fatigue, which is from the the viscoelastic properties of the FEC-derived SEI film. The impact of FEC is attributed to its ability to minimize the mechanical failure of the electrode caused by additional electrolyte decomposition. This beneficial outcome arises from volumetric stain-tolerant characteristics of the FEC-derived SEI film, which limited exposure of the bare SiO surface during 0.5 C-rate cycling. Notably, FEC greatly improves Li deposition during quick-charge cycles following aging at 0.5 C-rate cycling due to its ability to maintain a strong electrical connection between active materials and the current collector, even after extended cycling. Given these findings, we assert that mitigating SEI layer deterioration, which compromises the electrode structure, is vital. Hence, enhancing the interfacial attributes of the SiO electrode becomes crucial for maintaining kinetic efficiency of battery system.

Electrode of Low Impedance by Polypyrrole Addition for Supercapacitor (폴리피롤 첨가에 의한 supercapacitor용 저 임피던스 전극)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.343-350
    • /
    • 2003
  • The best Ppy weight ratio was 7 wt% and the optimal electrode composition ratio was 78 : 17 : 5 wt.% of (MSP-20 : BP-20 =1 : 1), (Super P : Ppy =10 : 7) and P(VdF-co-HFP). Implantation of Ppy as the conducting agents have led to superior electrochemical characteristics because of the low of internal resistance and faradaic capacitance. The result of unit cell with Ppy 7 wt% were as follows: 28.02 Fig of specific capacitance, 1.34 Ω of DC-ESR and 0.36 Ω of AC-ESR. Unit cell showed a good stability up to 200 charge-discharge cycles, retaining 82% of their original capacity at 200 cycles. From the analysis of impedance, the electrodes with Ppy 7 wt% showed low ESR, low charge transfer resistance and quick reaction rate. It was inferred that quick charge-discharge was possible. As compared with the specific capacitance (rectangular shape) of CV, it was also concluded that the specific capacitance originated from thecompound phenomena of the faradaic capacitance by oxidation and reduction of Ppy and the non-faradaic capacitance by adsorption-desorption of activated carbon.

  • PDF

High-speed charge pump circuits using weighted-capacitor and multi-path (Weighted-capacitor와 multi-path를 이용한 고속 승압 회로)

  • 김동환;오원석;권덕기;이광엽;박종태;유종근
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.863-866
    • /
    • 1998
  • In this paper two quick boosting charge pump circuits for high-speed EEPROM memory are proposed. In order to improve initial charge transfer efficiency, one uses weighted capacitors where each stage has different clock coupling capacitance, and the other uses a multi-path structure at the first stage. SPICE simulation results show that these charge pumps have improve drising-time characteristics, but their $V_{DD}$ mean currents are increased a little compared with conventioanl charge pumps. The rising time upt o 15V of the proposed charge pumps is 3 times faster than that of dickson's pump at the cost of 1.5 tiems more $V_{DD}$ mean current.rrent.

  • PDF

CC-CV Charging Time Characteristics of Lead-Acid Batteries Based on Compact Estimation Model (간결한 예측 모형에 기반한 납축전지의 정전류-정전압 충전시간 특성화)

  • Han, Jeong-gyeon;Shin, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.305-312
    • /
    • 2016
  • Modern embedded systems are typically operated by the rechargeable batteries in our daily life. Since charge of batteries is considered as an time consuming task, there have been extensive efforts to manage the charge time from the perspective of materials, circuits, and systems. Estimation of battery charge time is one of the essential information to design the charge circuitry. A compact macro model for the constant-current and constant-voltage charge protocol was recently introduced, which gives us a quick estimation of charge time with similar shape to the famous Peukert's law for discharge time estimation. The CC-CV charging protocol is widely used for Lithium-based batteries and Lead-acid batteries. In this paper, we characterize the lead-acid battery by measurement to extract the model coefficients, which was not covered by the previous studies. By our proposed model, the key coefficient Kcc results in 1.18-1.31, which is little bit higher than that of Lithium batteries. The accuracy of our model is within the range of ${\pm}10%$ error, which is compatible with the other studies such as Peukert's law.

Fabrication and Driving of Charged particle type display (대전입자형 디스플레이의 제조 및 구동)

  • Lee, Dong-Jin;Kim, Sung-Woon;Hwang, In-Sung;Kim, Chul-Ju;Kim, Young-Cho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.72-73
    • /
    • 2007
  • The charged particle have characteristics of high-contrast ratio and wide-view angle, quick-response time. When positive voltage is applied to the upper electrode, the yellow particles with negative charge move toward the upper substrate and the black particles with positive charge move toward opposite direction. We have developed the putting method that can fill particles in cell of panel and control the amount of charged particles. We investigated putting method, fabrication process, aging and driving for charged particle type display.

  • PDF

A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis (경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구)

  • Kim, Si-Yeon;Hwang, Jae-Dong;Lim, Jong-Hun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

A charged particles layer control and driving of Charged Particle Type Display (대전입자형 디스플레이의 대전입자층 제어와 구동)

  • Lee, Dong-Jin;Kim, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1376-1380
    • /
    • 2007
  • The charged particle type display have characteristics of high contrast ratio and wide viewing angle, quick response time. We used the yellow(-) and the black(+) colored particles, which is respectively addressed to the cells of upper and rear panel by using electric field. Our independent addressing method has strong points compared to the mixed particle putting method. After addressing, we packaged two panels and did aging process, and then panel is driven by matrix method of four channel electrodes. Layers of particles are controlled by height of cell barriers and needed minimum two layers. When positive voltage is applied to the upper electrode, the yellow particles with negative charge move toward the upper substrate and the black particles with positive charge move toward opposite direction.

  • PDF