Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.541-543
/
2004
능동적 학습(active learning)은 제한된 시간과 인력으로 가능한 정확도가 높은 분류기(classifier)를 생성하기 위하여, 훈련집합에 추가할 예제 즉 문의예제(query example)의 선정과 확장된 훈련집합으로 다시 학습하는 과정을 반복하여 수행한다. 능동적 학습의 핵심은 사용자에게 카테고리(category) 부여를 요청할 문의예제를 선정하는 과정에 있다. 효과적인 문의예제를 선정하기 위하여 다양한 방안들이 제안되었으나, 이들은 매 문의단계마다 하나의 문의예제를 선정하는 경우에 가장 적합하도록 고안되었다. 능동적 학습이 복수의 예제를 사용자에게 문의할 수 있다면, 사용자는 문의예제들을 서로 비교해 가면서 작업할 수 있으므로 카테고리 부여작업을 보다 빠르고 정확하게 수행할 수 있을 것이다. 또한 충분한 인력을 보유한 상황에서는, 카테고리 부여작업을 병렬로 처리할 수 있어 전반적인 학습시간의 단축에 큰 도움이 될 것이다. 하지만, 각 예제의 문의예제로써의 적합 정도를 추정하면 유사한 예제들은 서로 비슷한 수준으로 평가되므로, 기존의 방안들을 복수의 문의예제 선정작업에 그대로 적용할 경우, 유사한 예제들이 문의예제로 동시에 선정되어 능동적 학습의 효율이 저하되는 현상이 나타날 수 있다. 본 논문에서는 특정 예제를 문의예제로 선정하면 이와 일정 수준이상 유사한 예제들은 해당 예제와 함께 문의예제로 선정하지 않음으로써, 이러한 문제점을 극복할 수 있는 방안을 제안한다. 제안한 방안을 문서분류 문제에 적용해 본 결과 기존 문의예제 선정방안으로 복수 문의예제를 선정할 때 발생할 수 있는 문제점을 상당히 완화시킬 있을 뿐 아니라, 복수의 문의예제를 선정하더라도 각 문의 단계마다 하나의 예제를 선정하는 경우에 비해 큰 성능의 저하가 없음을 실험적으로 확인하였다./$m\ell$로 나타났다.TEX>${HCO_3}^-$ 이온의 탈착은 서서히 진행되었다. R&D investment increases are directly not liked to R&D productivities because of delays and side effects during transition periods between different stages of technology development. Thus, It is necessary to develope strategies in order to enhance efficiency of technological development process by perceiving the switching pattern. 기여할 수 있을 것으로 기대된다. 것이다.'ity, and warm water discharges from a power plant, etc.h to the way to dispose heavy water adsorbent. Through this we could reduce solid waste products and the expense of permanent disposal of radioactive waste products and also we could contribute nuclear power plant run safely. According to the result we could keep the best condition of radiation safety super vision and we could help people believe in safety with Radioactivity wastes control for harmony with Environ
Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.
Journal of the Korea Society of Computer and Information
/
v.14
no.10
/
pp.31-41
/
2009
In the Semantic Web, it is possible to provide intelligent information retrieval and automated web services by defining a concept of information resource and representing a semantic relation between resources with meta data and ontology. It is very important to manage semantic data such as ontology and meta data efficiently for implementing essential functions of the Semantic Web. Thus we propose an index structure to support more accurate search results and efficient query processing by considering semantic and structural features of the semantic data. Especially we use a graph data model to express semantic and structural features of the semantic data and process various type of queries by using graph model based path expressions. In this paper the proposed index aims to distinguish our approach from earlier studies and involve the concept of the Semantic Web in its entirety by querying on primarily extracted structural path information and secondary extracted one through semantic inferences with ontology. In the experiments, we show that our approach is more accurate and efficient than the previous approaches and can be applicable to various applications in the Semantic Web.
Korean Journal of Construction Engineering and Management
/
v.24
no.1
/
pp.51-60
/
2023
This paper aims to propose a method for the systematic management of construction information using ontology. In particular, it was intended to propose a method to systematically manage the construction method information required by designers and constructors. The information used in this paper is a case of test-bed construction resulting from 10 years of modernized Hanok technology development research. The new construction methods of modernized Hanok were organized using the ontology editor, Protege. To this end, the concept of ontology and the process of constructing ontology have been summarized through a review of existing research first. A conceptual diagram for constructing a domain ontology of the modernized Hanok construction methods was then proposed, and the effectiveness of the proposed domain ontology was verified using the SPARQL Query function of Protege. Finally, the defined classes and construction method metadata were published on the web using ontology web language (OWL).
Journal of Korea Society of Industrial Information Systems
/
v.29
no.4
/
pp.91-103
/
2024
A tourist destination ranking system was designed that employs a semantic search to extract information with reasonable accuracy. To this end the process involves collecting data, preprocessing text reviews of tourist spots, and embedding the corpus and queries with SBERT. We calculate the similarity between data points, filter out those below a specified threshold, and then rank the remaining tourist destinations using a count-based algorithm to align them semantically with the query. To assess the efficacy of the ranking algorithm experiments were conducted with four queries. Furthermore, 58,175 sentences were directly labeled to ascertain their semantic relevance to the third query, 'crowdedness'. Notably, human-labeled data for crowdedness showed similar results. Despite challenges including optimizing thresholds and imbalanced data, this study shows that a semantic search is a powerful method for understanding user intent and recommending tourist destinations with less time and costs.
Due to the improved performance and cost of personal mobile devices and rapid progress of wireless communication technology, the number of users who utilize these devices is increasing. This trend requires various types of services be available to users. So far, there have been many solutions provided for the shortest path problem. But, technologies which can offer various recommendation services to user depending on user’s current location are focused on Euclidean spaces rather than road network. Thus, in this paper, we extend the previous work to satisfy this requirement on road network database. Our proposed scheme requires pre-computation for the efficient query processing. In the preprocessing step, we first partition the input road network into a fixed number of Voronoi polygons and then pre-compute routing information for each polygon. In the meantime, we select the number of Voronoi polygons in proposition to the scale of road network. Through this selection, the required size of pre-computation is linearly increasing to the size of road network. Using this pre-computated information, we can process queries more quickly. Through experiments, we have shown that our proposed scheme can achieve excellent performance in terms of scheduling time and the number of visited nodes.
The ontology has been gaining increasing interests by recent arise of the semantic web and related technologies. The focus is mostly on inference query processing that requires high-level techniques for storage and searching ontologies efficiently, and it has been actively studied in the area of semantic-based searching. W3C's recommendation is to use RDFS and OWL for representing ontologies. However memory-based editors, inference engines, and triple storages all store ontology as a simple set of triplets. Naturally the performance is limited, especially when a large-scale ontology needs to be processed. A variety of researches on proposing algorithms for efficient inference query processing has been conducted, and many of them are based on using proven relational database technology. However, none of them had been successful in obtaining the complete set of inference results which reflects the five characteristics of the ontology properties. In this paper, we propose a new index structure called hyper cube index to efficiently process inference queries. Our approach is based on an intuition that an index can speed up the query processing when extensive inferencing is required.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.4
/
pp.259-267
/
2013
GIS-based web map service is all the more accessible to the public. Among others, location query services are most frequently utilized, which are currently restricted to only one keyword search. Although there increases the demand for the service for querying multiple keywords corresponding to sequential activities(banking, having lunch, watching movie, and other activities) in various locations POI, such service is yet to be provided. The objective of the paper is to develop the k-IPS algorithm for quickly and accurately querying multiple POIs that internet users input and locating the search outcomes on a web map. The algorithm is developed by utilizing hierarchical tree structure of $R^*$-tree indexing technique to produce overlapped geometric regions. By using recursive $R^*$-tree index based spatial join process, the performance of the current spatial join operation was improved. The performance of the algorithm is tested by applying 2, 3, and 4 multiple POIs for spatial query selected from 159 keyword set. About 90% of the test outcomes are produced within 0.1 second. The algorithm proposed in this paper is expected to be utilized for providing a variety of location-based query services, of which demand increases to conveniently support for citizens' daily activities.
KIPS Transactions on Software and Data Engineering
/
v.4
no.12
/
pp.543-548
/
2015
Recently top-k query processing has been extremely important along with the explosion of data produced by a variety of applications. Top-k queries return the best k results ordered by a user-provided monotone scoring function. As cloud computing service has been getting more popular than ever, a hot attention has been paid to cloud-based data outsourcing in which clients' data are stored and managed by the cloud. The cloud-based data outsourcing, though, exposes a critical secuity concern of sensitive data, resulting in the misuse of unauthorized users. Hence it is essential to encrypt sensitive data before outsourcing the data to the cloud. However, there has been little attention to efficient top-k processing on the encrypted cloud data. In this paper we propose a novel top-k processing algorithm that can efficiently process a large amount of encrypted data in the cloud. The main idea of the algorithm is to prune unpromising intermediate results at the early phase without decrypting the encrypted data by leveraging an order-preserving encrypted technique. Experiment results show that the proposed top-k processing algorithm significantly reduces the overhead of client systems from 10X to 10000X.
The relationship between chemical structures and biological activities is researched briskly in the area of 'Medicinal Chemistry' At the base of these structure-based drug design tries, medicinal chemists search the existing drugs of similar chemical structure to target drug for the development of a new drug. Therefore, it is such necessary that an automatic system selects drug files that have a set of chemical moieties matching a user-defined query moiety. Substructure searching is the process of identifying a set of chemical moieties that match a specific query moiety. Testing for substructure searching was developed in the late 1950s. In graph theoretical terms, this problem corresponds to determining which graphs in a set are subgraph isomorphic to a specified query moiety. Testing for subgraph isomorphism has been proved, in the general case, to be an NP- complete problem. For the purpose of overcoming this difficulty, there were computational approaches. On the 1990s, a US patent has been granted on an atom-centered indexing scheme, used by the RS3 system; this has the virtue that the indexes generated can be searched by direct text comparison. This system is commercially used(http://www.acelrys.com/rs3). We define the RS3 system's drawback and present a new indexing scheme. The RS3 system treats substructure searching with substring matching by means of expressing chemical structure aspredefined strings. However, it has insufficient 'rerall' and 'precision‘ because it is impossible to index structures uniquely for same atom and same bond. To resolve this problem, we make the minimum-cost- spanning tree for one centered atom and describe a structure with paths per levels. Expressing 2D chemical structure into 1D a string has limit. Therefore, we break 2D chemical structure into 1D structure fragments. We present in this paper a new index technique to improve recall and precision surprisingly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.