Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2004.04b
- /
- Pages.541-543
- /
- 2004
- /
- 1598-5164(pISSN)
Selecting Multiple Query Examples for Active Learning
능동적 학습을 위한 복수 문의예제 선정
Abstract
능동적 학습(active learning)은 제한된 시간과 인력으로 가능한 정확도가 높은 분류기(classifier)를 생성하기 위하여, 훈련집합에 추가할 예제 즉 문의예제(query example)의 선정과 확장된 훈련집합으로 다시 학습하는 과정을 반복하여 수행한다. 능동적 학습의 핵심은 사용자에게 카테고리(category) 부여를 요청할 문의예제를 선정하는 과정에 있다. 효과적인 문의예제를 선정하기 위하여 다양한 방안들이 제안되었으나, 이들은 매 문의단계마다 하나의 문의예제를 선정하는 경우에 가장 적합하도록 고안되었다. 능동적 학습이 복수의 예제를 사용자에게 문의할 수 있다면, 사용자는 문의예제들을 서로 비교해 가면서 작업할 수 있으므로 카테고리 부여작업을 보다 빠르고 정확하게 수행할 수 있을 것이다. 또한 충분한 인력을 보유한 상황에서는, 카테고리 부여작업을 병렬로 처리할 수 있어 전반적인 학습시간의 단축에 큰 도움이 될 것이다. 하지만, 각 예제의 문의예제로써의 적합 정도를 추정하면 유사한 예제들은 서로 비슷한 수준으로 평가되므로, 기존의 방안들을 복수의 문의예제 선정작업에 그대로 적용할 경우, 유사한 예제들이 문의예제로 동시에 선정되어 능동적 학습의 효율이 저하되는 현상이 나타날 수 있다. 본 논문에서는 특정 예제를 문의예제로 선정하면 이와 일정 수준이상 유사한 예제들은 해당 예제와 함께 문의예제로 선정하지 않음으로써, 이러한 문제점을 극복할 수 있는 방안을 제안한다. 제안한 방안을 문서분류 문제에 적용해 본 결과 기존 문의예제 선정방안으로 복수 문의예제를 선정할 때 발생할 수 있는 문제점을 상당히 완화시킬 있을 뿐 아니라, 복수의 문의예제를 선정하더라도 각 문의 단계마다 하나의 예제를 선정하는 경우에 비해 큰 성능의 저하가 없음을 실험적으로 확인하였다./
Keywords