Selecting Multiple Query Examples for Active Learning

능동적 학습을 위한 복수 문의예제 선정

  • 강재호 (동아대학교 지능형통합항만관리연구센터) ;
  • 류광렬 (부산대학교 컴퓨터공학과)
  • Published : 2004.04.01

Abstract

능동적 학습(active learning)은 제한된 시간과 인력으로 가능한 정확도가 높은 분류기(classifier)를 생성하기 위하여, 훈련집합에 추가할 예제 즉 문의예제(query example)의 선정과 확장된 훈련집합으로 다시 학습하는 과정을 반복하여 수행한다. 능동적 학습의 핵심은 사용자에게 카테고리(category) 부여를 요청할 문의예제를 선정하는 과정에 있다. 효과적인 문의예제를 선정하기 위하여 다양한 방안들이 제안되었으나, 이들은 매 문의단계마다 하나의 문의예제를 선정하는 경우에 가장 적합하도록 고안되었다. 능동적 학습이 복수의 예제를 사용자에게 문의할 수 있다면, 사용자는 문의예제들을 서로 비교해 가면서 작업할 수 있으므로 카테고리 부여작업을 보다 빠르고 정확하게 수행할 수 있을 것이다. 또한 충분한 인력을 보유한 상황에서는, 카테고리 부여작업을 병렬로 처리할 수 있어 전반적인 학습시간의 단축에 큰 도움이 될 것이다. 하지만, 각 예제의 문의예제로써의 적합 정도를 추정하면 유사한 예제들은 서로 비슷한 수준으로 평가되므로, 기존의 방안들을 복수의 문의예제 선정작업에 그대로 적용할 경우, 유사한 예제들이 문의예제로 동시에 선정되어 능동적 학습의 효율이 저하되는 현상이 나타날 수 있다. 본 논문에서는 특정 예제를 문의예제로 선정하면 이와 일정 수준이상 유사한 예제들은 해당 예제와 함께 문의예제로 선정하지 않음으로써, 이러한 문제점을 극복할 수 있는 방안을 제안한다. 제안한 방안을 문서분류 문제에 적용해 본 결과 기존 문의예제 선정방안으로 복수 문의예제를 선정할 때 발생할 수 있는 문제점을 상당히 완화시킬 있을 뿐 아니라, 복수의 문의예제를 선정하더라도 각 문의 단계마다 하나의 예제를 선정하는 경우에 비해 큰 성능의 저하가 없음을 실험적으로 확인하였다./$m\ell$로 나타났다.TEX>${HCO_3}^-$ 이온의 탈착은 서서히 진행되었다. R&D investment increases are directly not liked to R&D productivities because of delays and side effects during transition periods between different stages of technology development. Thus, It is necessary to develope strategies in order to enhance efficiency of technological development process by perceiving the switching pattern. 기여할 수 있을 것으로 기대된다. 것이다.'ity, and warm water discharges from a power plant, etc.h to the way to dispose heavy water adsorbent. Through this we could reduce solid waste products and the expense of permanent disposal of radioactive waste products and also we could contribute nuclear power plant run safely. According to the result we could keep the best condition of radiation safety super vision and we could help people believe in safety with Radioactivity wastes control for harmony with Environ

Keywords