• Title/Summary/Keyword: Query Routing

Search Result 63, Processing Time 0.025 seconds

Energy-Efficient Routing for Data Collection in Sensor Networks (센서 네트워크에서의 데이타 수집을 위한 라우팅 기법)

  • Song, In-Chul;Roh, Yo-Han;Hyun, Dong-Joon;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.188-200
    • /
    • 2006
  • Once a continuous query, which is commonly used in sensor networks, is issued, the query is executed many times with a certain interval and the results of those query executions are collected to the base station. Since this comes many communication messages continuously, it is important to reduce communication cost for collecting data to the base station. In sensor networks, in-network processing reduces the number of message transmissions by partially aggregating results of an aggregate query in intermediate nodes, or merging the results in one message, resulting in reduction of communication cost. In this paper, we propose a routing tree for sensor nodes that qualify the given query predicate, called the query specific routing tree(QSRT). The idea of the QSRT is to maximize in-network processing opportunity. A QSRT is created seperately for each query during dissemination of the query. It is constructed in such a way that during the collection of query results partial aggregation and packet merging of intermediate results can be fully utilized. Our experimental results show that our proposed method can reduce message transmissions more than 18% compared to the existing one.

Routing Techniques for Data Aggregation in Sensor Networks

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.396-417
    • /
    • 2018
  • GR-tree and query aggregation techniques have been proposed for spatial query processing in conventional spatial query processing for wireless sensor networks. Although these spatial query processing techniques consider spatial query optimization, time query optimization is not taken into consideration. The index reorganization cost and communication cost for the parent sensor nodes increase the energy consumption that is required to ensure the most efficient operation in the wireless sensor node. This paper proposes itinerary-based R-tree (IR-tree) for more efficient spatial-temporal query processing in wireless sensor networks. This paper analyzes the performance of previous studies and IR-tree, which are the conventional spatial query processing techniques, with regard to the accuracy, energy consumption, and query processing time of the query results using the wireless sensor data with Uniform, Gauss, and Skew distributions. This paper proves the superiority of the proposed IR-tree-based space-time indexing.

Query Technique for Quick Network Routing changing of Mobility Sensor Node in Healthcare System (헬스케어 시스템에서 이동형 센서노드의 신속한 네트워크 라우팅 변화를 위한 질의기법)

  • Lee, Seung-chul;Kwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.517-520
    • /
    • 2009
  • Healthcare application system has been actively researched to apply WSN technology to healthcare area with a mobile sensor node of low cost, low power, and small size. Sensor node has the problem for transmission range of RF power and time delay of the wireless routing connectivity between sensor nodes. In this paper, we proposes a new method utilizing mobile sensor nodes with relay sensor nodes for quick network routing changing using query technique in healthcare system. A query processor to control and manage the routing changing of sensor nodes in a wireless sensor network was designed and implemented. The user's PC transmits the beacon message which will change the quick link routing according to activity status of patient in wireless sensor network. We describe the implementation for query protocol that is very effective of power saving between sensor nodes.

  • PDF

Approaches for Improving Bloom Filter-Based Set Membership Query

  • Lee, HyunYong;Lee, Byung-Tak
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.550-569
    • /
    • 2019
  • We propose approaches for improving Bloom filter in terms of false positive probability and membership query speed. To reduce the false positive probability, we propose special type of additional Bloom filters that are used to handle false positives caused by the original Bloom filter. Implementing the proposed approach for a routing table lookup, we show that our approach reduces the routing table lookup time by up to 28% compared to the original Bloom filter by handling most false positives within the fast memory. We also introduce an approach for improving the membership query speed. Taking the hash table-like approach while storing only values, the proposed approach shows much faster membership query speed than the original Bloom filter (e.g., 34 times faster with 10 subsets). Even compared to a hash table, our approach reduces the routing table lookup time by up to 58%.

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

Design and implementation of flooding-based query model in wireless sensor networks for indoor environmental monitoring system (실내환경 모니터링시스템을 위한 무선 센서네트워크에서의 플러딩 방식의 질의모델 설계 및 구현)

  • Lee, Seung-Chul;Jung, Sang-Joong;Lee, Young-Dong;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.168-177
    • /
    • 2008
  • An indoor environmental monitoring system using IEEE 802.15.4 based wireless sensor network is proposed to monitor the amount of pollutant entering to the room from outside and also the amount of pollutant that is generated in indoor by the building materials itself or human activities. Small-size, low-power wireless sensor node and low power electrochemical sensor board is designed to measure the condition of indoor environment in buildings such as home, offices, commercial premises and schools. In this paper, two query models, the broadcasting query protocol and flooding query protocol, were designed and programmed as a query-based routing protocol in wireless sensor network for an environment monitoring system. The flooding query routing protocol in environment monitoring is very effective as a power saving routing protocol and reliable data transmission between sensor nodes.

A Physical Data Design and Query Routing Technique of High Performance BLAST on E-Cluster (고성능 BLAST구현을 위한 E-Cluster 기반 데이터 분할 및 질의 라우팅 기법)

  • Kim, Tae-Kyung;Cho, Wan-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.139-147
    • /
    • 2009
  • BLAST (Basic Local Alignment Search Tool) is a best well-known tool in a bioinformatics area. BLAST quickly compares input sequences with annotated huge sequence databases and predicts their functions. It helps biologists to make it easy to annotate newly found sequences with reduced experimental time, scope, and cost. However, as the amount of sequences is increasing remarkably with the advance of sequencing machines, performance of BLAST has been a critical issue and tried to solve it with several alternatives. In this paper, we propose a new PC-Based Cluster system (E-Cluster), a new physical data design methodology (logical partitioning technique) and a query routing technique (intra-query routing). To verify our system, we measure response time, speedup, and efficiency for various sizes of sequences in NR (Non-Redundancy) database. Experimental result shows that proposed system has better speedup and efficiency (maximum 600%) than those o( conventional approaches such as SMF machines, clusters, and grids.

Query Routing in Road-Based Mobile Ad-Hoc Networks (도로 기반 이동 애드 혹 망에서 질의 처리 방법)

  • Hwang So-Young;Kim Kyoung-Sook;Li Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.259-266
    • /
    • 2005
  • Recently data centric routing or application dependent routing protocols are emerged in mobile ad hoc networks. In this paper, we propose a routing method for query processing in MANET(Mobile Ad hoc NETwork) environment, called road-based query routing, with consideration on real time traffic information of large number of vehicles. In particular, we focus on the method that process arrival time dependent shortest path query in MANET without a central server on the road networks. The main idea of our approach lies in a routing message that includes query predicates based on the road connectivity and on data gathering method in real time from vehicles on the road by ad-hoc network. We unify route discovery phase and data delivery(query processing) phase in our mechanism and reduce unnecessary flooding messages by pruning mobile nodes which are not on the same or neighboring road segments. In order to evaluate the performances of the proposed method, we established a model of road networks and mobile nodes which travel along the roads. The measurement factor is the number of nodes to whom route request is propagated according to each pruning strategy. Simulation result shows that road information is a dominant factor to reduce the number of messages.

A ZRP-based Reliable Route Discovery Scheme in Ad-Hoc Networks (애드혹 네트워크에서 ZRP를 기반으로 하는 경로 탐색 기법)

  • Kim, Kyoung-Ja;Chang, Tae-Mu
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.293-300
    • /
    • 2004
  • Ad hoc networks are groups of mobile hosts without any fixed infrastructure. Frequent changes in network topology owing to node mobility make these networks very difficult to manage. Therefore, enhancing the reliability of routing paths in ad hoc networks gets more important. In this paper, we propose a ZRP(Zone Routing Protocol)-based route discovery scheme that can not only reduce the total hops of routing path, but Improve security through authentications between two nodes. And to solve the problem in maintenance of routing paths owing to frequent changes of the network topology, we adopt a query control mechanism. The effectiveness of our scheme is shown by simulation methods.

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

  • Cao, Qi;Fujita, Satoshi
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.628-645
    • /
    • 2014
  • In past few years, distributed hash table (DHT)-based P2P systems have been proven to be a promising way to manage decentralized index information and provide efficient lookup services. However, the skewness of users' preferences regarding keywords contained in a multi-keyword query causes a query load imbalance that combines both routing and response load. This imbalance means long file retrieval latency that negatively influences the overall system performance. Although index replication has a great potential for alleviating this problem, existing schemes did not explicitly address it or incurred high cost. To overcome this issue, we propose, in this paper, an integrated solution that consists of three replication schemes to alleviate query load imbalance while minimizing the cost. The first scheme is an active index replication that is used in order to decrease routing load in the system and to distribute response load of an index among peers that store replicas of the index. The second scheme is a proactive pointer replication that places location information of each index to a predetermined number of peers for reducing maintenance cost between the index and its replicas. The third scheme is a passive index replication that guarantees the maximum query load of peers. The result of simulations indicates that the proposed schemes can help alleviate the query load imbalance of peers. Moreover, it was found by comparison that our schemes are more cost-effective on placing replicas than PCache and EAD.