• Title/Summary/Keyword: Quercitrin gallate

Search Result 13, Processing Time 0.02 seconds

Quercitrin Gallate Down-regulates Interleukin-6 Expression by Inhibiting Nuclear Factor-kB Activation in Lipopolysaccharide-stimulated Macrophages

  • Min, Kyung-Rak;Kim, Byung-Hak;Chang, Yoon-Sook;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Quercitrin gallate was previously isolated from Persicaria lapathifolia (Polygonaceae) as an inhibitor of superoxide production. In the present study, quercitrin gallate was found to inhibit interleukin (IL)-6 production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $63\;{\mu}M$. Furthermore, quercitrin gallate attenuated LPS-induced synthesis of IL-6 transcript but also inhibited LPS-induced IL-6 promoter activity, indicating that the compound could down-regulate IL-6 expression at the transcription level. Since nuclear factor (NF)-kB has been shown to play a key role in LPS-inducible IL-6 expression, an effect of quercitrin gallate on LPS-induced NF-kB activation was further analyzed. Quercitrin gallate exhibited a dosedependent inhibitory effect on LPS-induced nuclear translocation of NF-kB without affecting inhibitory kB (IkB) degradation, and subsequently inhibited LPS-induced NF-kB transcriptional activity in macrophages RAW 264.7. Taken together, quercitrin gallate down-regulated LPS-induced IL-6 expression by inhibiting NF-kB activation, which could provide a pharmacological potential of the compound in IL-6-related immune and inflammatory diseases.

Phenolic Compounds from the Rachis of Cedrela sinensis

  • Yu, Young-Beob;Lee, Jong-Ho;Choi, Jae-Sue;Ok, Kwang-Dae;Park, Jong-Cheol
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.3
    • /
    • pp.219-223
    • /
    • 1996
  • From the rachis of Cedrela sinensis A. Juss., methyl gallate, quercitrin, bis-(p-hydroxyphenyl)ether, adenosine, isoquercitrin, rutin, (+)-catechin and (-)-epicatechin were isolated and characterized by spectral data.

  • PDF

Studies on the Chemical Components and Biological Activities of Edible Plants in Korea(I) - Phenolic Compounds from the Leaves of Cedrela sinensis A. Juss. (한국산 식용식물의 화학성분 및 생리활성에 관한 연구 (I) - 참죽나무 잎에서 페놀성 화합물의 분리)

  • 박종철;양한석;유엉법;이종호
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.306-310
    • /
    • 1993
  • The leaves of Cedrela sinensis have been used for food at south area in Korea and oriental medicine for treating enteritis, dysentery and itch. Kaempferol, methyl gailate, quercetin, afzelin, quercitrin, isoquercitrin and rutin were isolated from the leaves of this plant and characterized by spectral data. These compounds are reported for the first time from this plant.

  • PDF

Antioxidant Compounds from Distylium racemosum Leaves

  • Park, Youngki;Lee, Wi Young;Ahn, Jin Kwon;Lee, Hak-Ju;Chin, Hwi Seung;Kwon, Young Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.67-72
    • /
    • 2003
  • The leaves of D. racemosum showed strong DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and the order of the radical scavenging activity against DPPH radical is ethyl acetate (EtOAc) fraction>crude extracts>residue fraction>hexane fraction>ether fraction, under the experimental conditions. Since EtOAc fraction has highest antioxidative activity among these fractions, the isolation was performed from the EtOAc fraction of the leaves of D. racemosum and four phenolic compounds were isolated and identified as follows: methyl gallate, kaempferol, quercetin and quercitrin. The free radical scavenging activities of these compounds were 79.9%, 93.1%, 93.6% and 66.7% at 10 ㎍/ml, respectively. The IC50 of compound 1, compound 2, compound 3 and compound 4 were 6.1, 4.1, 3.6 and 6.5 ㎍/ml, respectively. These compounds have higher antioxidative activity compared with reference compounds, ascorbic acid (IC50 = 9.6 ㎍/ml).

Chemical Constituents of Domestic Quercus spp. Leaves (국내산 참나무속 수종 잎의 추출성분)

  • Kim, Jin-Kyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.61-71
    • /
    • 2006
  • This study was carried out to investigate chemotaxonomical correlation an d the chemical constituents of domestic Quercus sp. leaves. The leaves of Q. mongolica, Q. aliena, Q. serrata, Q. acutissima, Q. dentata and Q. variabilis were collected in the experimental forest of Kangwon National University. The combined extracts were successively fractionated with n -hexane, methylene chloride and ethyl acetate using a separation funnel. A portion of the ethyl acetate and $H_2O$ soluble materials of each species were chromatographed on a Sephadex LH-20 column using various aqueous MeOH and EtOH-hexane as washing solvents. Spectrometric analysis such as NMR and MS, including TLC, were performed to characterize the structures of the isolated compounds. Gallic acid, (+)-catechin, (-)-epicatechin, (+)-gallocatechin, kaempferol, astragalin, astragalin-6"-O-gallate, isoquercitrin, isoquercitrin-6"-O-gallate and myricetin were isolated from Q. mongolic a leaves. Gallic acid, kaempferol and quercetin were characterized from Q. acutissima leaves. Gallic acid, (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, kaempferol, quercetin, guajaverin and tamarixin were identified from Q. dentata leaves. Gallic acid, (+)-catechin, (-)-epicatechin, kaempferol, quercitrin, isoquercitrin and myricetin were purified from Q. serrata leaves. Gallic acid, (+)-catechin, astragalin, astragalin-6"-O-gallate and isoquercitrin were isolated from Q. variabilis leaves. Gallic acid was isolated from all the leaves and could be a taxonomic index on Quercus spp..

Phenolic compounds from Acer ginnala Maxim (신나무의 Phenol성 화합물에 관한 화학적 연구(I))

  • Park, Woong-Yang
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.3
    • /
    • pp.212-218
    • /
    • 1996
  • Two phenolcarboxylic acids. five flavonoids and one hydrolysable tannin were isolated from the leaves of Acer ginnala Maxim. On the basis of chemical and spectroscopic evidence, the strutures of these compounds were established as gallic acid, ethylgallate, acertannin, quercetin, quercitrin, isoquercitrin, rutin, $quercetin-3-O-{\alpha}-_L-rhamnopyranosyl-2'-gallate$.

  • PDF

The Isolation of the Inhibitory Constitutents on Melanin Polymer Formation from the Leaves of Cercis chinensis (박태기나무의 잎으로부터 피부멜라닌 색소생성 억제성분의 분리)

  • Kim, So-Young;Kim, Jin-Joon;Jang, Tae-Soo;Chung, See-Ryun;Lee, Seung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.397-403
    • /
    • 1999
  • Tyrosinase plays an important role in the process of melanin polymer biosynthesis. Therefore, the enzyme inhibitors have been of great concern as cosmetics to have skin-whitening effects on the local hyperpigmentation. During the search for new inhibitory compounds on melanin polymer biosynthesis from natural sources, MeOH extracts of 589 higher plants were tested for the inhibitory effect on tyrosinase activity by the muschroom tyrosinase assay in vitro. Among plants tested, the leaves of Cercis chinensis exhibited potent inhibitory effect on mushroom tyrosinase activity. Subsequently seven active compounds were isolated from the ethyl acetate soluble part of acetone extract of the leaves of C. chinensis by the activity guided fractionation monitoring the inhibitory effect on tyrosinase activity. Their chemical structures were identified as $kaempferol-3-0-{\alpha}-L-rhamnoside$, quercitrin, $myricetin-3-0-{\alpha}-L-rhamnoside$, myricetin-3-0-(2'-O-galloyl)- ${\alpha}$ -L-rhamopyranoside (desmanthin), (-)-epicatechin-3-0-gallate, (-)-epigallocatechin-3-0-gallate, and methyl gallate on the basis of the speculation of spectral data and chemical reaction. Among the flavonol rhamnosides, myricetin-3-0-(2'-O-galloyl)- -L-rhamnoside(desmanthin) showed most potent inhibitory effect on tyrosinase activity and the structure of B-ring in flavonol moiety was related to the activity. (-)-Epigallocatechin-3-O-gallate having pyrogallol group in flavan-3-ol moiety exhibited more potent inhibitory effect than (-)-epicatechin-3-0-gallate having catechol group in flavan-3-ol moiety on mushroom tyrosinase activity.

  • PDF

HPLC analysis of Phenolic Substances and Anti-Alzheimer's Activity of Korean Quercus Species

  • Nugroho, Agung;Song, Byong-Min;Seong, Su Hui;Choi, Jae Sue;Choi, Jongwon;Choi, Ji-Yeon;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.299-306
    • /
    • 2016
  • This study aimed to establish the quantitative method to analyze the content of peroxynitrite-scavengers belonging to polyphenols in six Korean Quercus species (Quercus mongolica, Q. dentata, Q. acutissima, Q. alienta, Q. serrata, and Q. variabilis) by HPLC. The twelve peroxynitrite-scavengers, flavanols (catechins: (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin), flavonols (kaempferol and quercetin), flavonol glycosides (astragalin, quercitrin, and isoquercitrin), flavonol acylated glycosides (astragalin 6''-gallate and isoquercitrin 6''-gallate), gallic acid and its dimer (ellagic acid) were analyzed by HPLC. Further, anti-Alzheimer's activity was assayed in a passive avoidance testusing mice by measuring the retention latency (sec), the concentration of acetylcholine (ACh), and acetylcholinesterase (AChE) activity. Simultaneous analysis of the extracts of the six Quercus leaves was achieved on a Capcell C18 column ($5{\mu}m$, $250mm{\times}4.6mm\;i.d.$) with a gradient elution of 0.05% HAc and 0.05% HAc in $CH_3CN$. In the extract of Q. mongolica leaves, the content of gallic acid (32.53 mg/g), (+)-catechin (28.78 mg/g), (-)-epicatehin (22.03 mg/g), astragalin 6''-gallate (20.94 mg/g), and isoquercitrin 6''-gallate (44.11 mg/g) and peroxynitrite-scavenging activity ($IC_{50}$, $0.831{\mu}g/ml$) were high. This extract delayed the retention latency and inhibited acetylcholinesterase activity in scopolamine-induced memory impairment of mice, suggesting that it has anti-Alzheimer's activity.

Phenolic Compounds of Aerial Parts of Euphorbia pekinensis (대극 지상부의 페놀성 화합물)

  • Ahn, Byung-Tae;Zhang, Ben Kang;Lee, Sang-Cheol;Kim, Jae-Gil;Ro, Jai-Seup;Lee, Kyong-Soon
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.170-176
    • /
    • 1996
  • A chemical examination of the aerial parts of Euphorbia pekinensis $R_{UPRECHT}$. (Euphorbiaceae) has led to the isolation of seven hydrolyzable tannins and ten fl avonoid glycosides. The former ones have been identified as gallic acid, methylgallate, 3-O-galloyl shikimic acid, 1,3,4,6-tetra-O-galloyl-${\beta}-_D$-glucose, 1,2,3,4,6-penta-O-galloyl-${\beta}-_D$-glucose, corilagin, geraniin and the latter ones as isoquercitrin, quercitrin, astragalin, afzelin, prunin, rutin, kaempferol-3-O-rutinoside, quercetin-3-O-(2"-O-galloyl)-${\beta}-_D$-glucoside and quercetin-3-O-(2"-O-galloyl)-${\alpha}-_L$-rhamnoside on the basis of chemical and spectroscopic evidence.

  • PDF

Phenolic Compounds from Cercis chinensis Leaves (박태기나무엽의 페놀성분)

  • 김강진;오인세;황완균;김일혁
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.600-609
    • /
    • 1995
  • Studies on the pharmaco-constituents from the leaves of Cercts chinensis which have been used for the treatment of inflammation, contusion, dilated blood, pain of heart and stomach, edema, etc. in Korean folk remedies were carried out. Dried leaves of the plant were extracted with MeOH. The MeOH extract was suspended in distilled water and subsequently fractionated with $Et_{2}O$ and n-BuOH. From the $Et_{2}O$ and n-BuOH fractions, six phenolic compounds were isolated and identified as myricitrin($C_{21}H_{20}O_{12}, {\;}m.p.{\;}199~200^{\circ}$. $4myricetin-3-O-{\alpha}-L-rhamnopyranoside$), kaempferol($C_{15}H_{10}O_{6}, {\;}m.p. 276^{\circ}$), quercetin($C_{15}Ha_{10}O_{7}, {\;}m.p.{\;}313~314^{\circ}$), quercitrin ($C_{21}H_{20}O_{12}, {\;}m.p.{\;}176~178^{\circ}, {\;}quercetin-3-O-{\alpha}-L-rhamnopyranoside$), gallicin ($C_{8}H_{8}O_{5}, {\;}m.p.{\;}202~203^{\circ}$. methyl gallate), gallic acid ($C_{7}H_{6}O_{5}, {\;}m.p.{\;}260~265^{\circ}) through their physico-chemical data and UV, IR, EI-MS, $^{13}C-NMR$, and $^{1}H-NMR$ analysis with authentics.

  • PDF