• Title/Summary/Keyword: Quencher

Search Result 81, Processing Time 0.017 seconds

Improvement of Spatial Resolution in Nano-Stereolithography Using Radical Quencher

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Kim, Ran-Hee;Lee, Kwang-Sup
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.559-564
    • /
    • 2006
  • The improvement of spatial resolution is a fundamental issue in the two-photon, polymerization-based, laser writing. In this study, a voxel tuning method using a radical quencher was proposed to increase the resolution, and the quenching effect according to the amount of radical quencher was experimentally investigated. Employing the proposed method, the lateral resolution of the line patterns was improved almost to 100 nm. However, a shortcoming of the quenching effect was the low mechanical strength of polymerized structures due to their short chain lengths. Nano-indentation tests were conducted to evaluate quantitatively the relationship between mechanical strength and the mixture ratio of the radical quencher into the resins. The elastic modulus was dramatically reduced from an average value of 3.015 to 2.078 GPa when 5 wt% of radical quencher was mixed into the resin. Three-dimensional woodpile structures were fabricated to compare the strength between the resin containing radical quencher and the original resin.

A Linear Beacon System Featuring an Internal Deoxyguanine Quencher Allows Highly Selective Detection of Single Base Mismatches

  • Lee, Young-Ae;Hwang, Gil-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2011-2014
    • /
    • 2010
  • The fluorescence intensity of a single-stranded oligonucleotide containing a fluorene-labeled deoxyuridine $(U^{Fl})$ unit increases by only 1.5-fold upon formation of its perfectly matched duplex. To increase the fluorescence signal during hybridization, we positioned a quencher strand containing a deoxyguanine (dG) nucleobase, functioning as an internal quencher, opposite to the $U^{Fl}$ unit to reduce the intrinsic fluorescence upon hybridization with a probe. From an investigation of the optimal length of the quencher strand and the effect of the neighboring base sequence, we found that a short strand (five-nucleotide) containing all natural nucleotides and dG as an internal quencher was effective at reducing the intrinsic fluorescence of a linear beacon; it also exhibited high total discrimination factors for the formation of perfectly matched and single base-mismatched duplexes. Such assays that function based on clear changes in fluorescence in response to single-base nucleotide mutations would be useful tools for accelerating diagnoses related to various diseases.

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency (과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구)

  • Koo, Seongmo;Chang, Hyuksang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2017
  • Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.

Effects of Light Pulse Intensity and Quencher Concentration on the Time-Dependent Fluorescence Quenching Kinetics

  • Yang Mino;Lee Sangyoub;Shin, Kook Joe;Choo Kwang Yul;Lee Duckhwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.325-331
    • /
    • 1992
  • By using the general theoretical framework proposed recently for treating the fluorescence quenching kinetics, we investigate the effect of light pulse intensity on the decay of fluorescence which follows excitation of fluorophors by the light pulse of very short but finite duration. It is seen that conventional theory breaks down when the exciting light pulse has a pulse width comparable to the fluorescent lifetime and its intensity is very high. We also find that even when the light intensity is not too high, conventional theory may fail in either of the following cases: (i) when the quencher concentration is high, (ii) when there is an attractive potential of mean force between the fluorophor and quencher, or (iii) when the energy transfer from the fluorophor to the quencher may also occur at a distance, e.g., via dipole-dipole interaction. The validity of the predictions of the present theory may thus be tested by fluorescence quenching experiments performed under such situations.

Cure depth control using photopolymerization inhibitor in microstereolithography and fabrication of three dimensional microstructures (액속주사법을 이용한 마이크로 광조형시 광폴리머에 대한 중합억제제의 영향분석 및 삼차원 미세구조물 제조)

  • 김성훈;주재영;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.714-719
    • /
    • 2004
  • Controlling the cure depth of the Fa1260T photopolymer enhances the quality of a microstructure and minimizes its size in microstereolithography. In this work, variation of cure depth of the Fa1260T photopolymer is investigated while the concentration of a photopolymerization inhibitor as a radical quencher was varied. The energy source inducing photopolymerization was a He-Cd laser and a motorized stage controled the laser beam path accurately. The effects of process variables such as laser beam power and scan speed on the cure depth were examined. Optimum conditions for the minimum cure depth were determined as laser power of 230 W and scan speed of 40-50 m/s at the concentration of the radical quencher of 5%. The minimum cure depth at the optimal condition was 14 m. The feasibility of the fabrication of microstructures such as a microcup, microfunnel, and microgrid of 100 m size is demonstrated using Super IH process.

  • PDF

Characterization of Graphene Oxide Suspension for Fluorescence Quenching in DNA-Diagnostics

  • Kapitonov, A.N.;Alexandrov, G.N.;Vasileva, F.D.;Smagulova, S.A.;Timofeev, V.B.;Maksimova, N.R.;Kuznetsov, A.A.
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The graphene oxides (GOs) were tested as a fluorescent quencher in the field of DNA-diagnostics. The various suspensions of GO nanoplates were prepared by changing the synthesis conditions. The suspensions were stable for at least 6 weeks by differing degrees of functionalization of various oxygen-containing groups of atoms. Depending on the properties of GO nanoplates, their fluorescent quenching abilities, which were determined by the amount of the tagged immobilized oligonucleotide, were also changed. GO suspension synthesized at $75^{\circ}C$ of reaction mixture showed the fluorescent quenching of 16.39 nmol/mg, which would be a potential substitution of molecular fluorescent quencher in test-systems for DNA-diagnostics.

Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun;Oh, Chu-Ha;Lee, Hyeong-Chul;Choi, Jae-Gyu;Jung, Beung-In;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2002-2010
    • /
    • 2006
  • This study examined the quenching of ofloxacin (OFL) and flumequine (FLU) fluorescence by $Cuj^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Mn^{2+}$ in an aqueous solution. The change in the fluorescence intensity and lifetime was measured at various temperatures as a function of the quencher concentration. According to the Stern-Volmer plots, the fluorescence emission was quenched by both collisions (dynamic quenching) and complex formation (static quenching) with the same quencher but the effect of static quenching was larger than that of dynamic quenching. Large static and dynamic quenching constants for both OFL and FLU support significant ion-dipole and orbital-orbital interactions between fluorophore and quencher. For both molecules, the static and dynamic quenching constants by $Cu^{2+}$ were the largest among all the metal quenchers examined in this study. In addition, both the static and dynamic quenching mechanisms by $Cu^{2+}$ were somewhat different from the quenching caused by other metals. Between $Ni^{2+}$ and FLU, a different form of chemical interaction was observed compared with the interaction by other metals. The change in the absorption spectra as a result of the addition of a quencher provided information on static quenching. With all these metals, the static quenching constant of FLU was larger than those of OFL. The fluorescence of OFL was quite insensitive to both the dynamic and static quenching compared with FLU. This property of OFL can be explained by the twisted intramolecular charge transfer in the excited state.