• 제목/요약/키워드: Quench time

검색결과 91건 처리시간 0.021초

Saengmaeg-san as an ergogenic aid: improving exercise performance

  • Kwak, Jae-Jun;Yook, Jang Soo;Jeong, Woo-Min;Kim, Ji-Sun;Ha, Min-Seong
    • 한국응용과학기술학회지
    • /
    • 제37권5호
    • /
    • pp.1314-1322
    • /
    • 2020
  • Sports drinks help optimize and improve performance by delaying and eliminating the buildup of fatigue-causing substances in the body during exercise. Saengmaeg-san is a nature-friendly traditional beverage that has no side effects on the human body and can quench thirst. However, studies on the relationship between exercise ability and Saengmaeg-san are insufficient. The purpose of this study was to prescribe Saengmaeg-san during the summer training period of 4 weeks and to analyze the effect on body composition and exercise performance. Seventeen male participants were divided into 3 groups (Saengmaeg-san acid intake group [n=9], placebo group [n=8]), and body composition (height, weight, muscle mass, fat mass, BMI) and conducted exercise performance (total exercise time and HRmax). In our study, Saengmaeg-san intake had a positive effect on exercise performance, such as decreased body fat percentage, increased exercise time, and decreased HRmax. Therefore, Saengmaeg-san showed the potential as a sports drink. In the future, additional studies on fatigue-related substances, immune function-markers, and blood lipids are needed in order to clearly explain the change in exercise performance due to consumption of Saengmaeg-san.

Micro SMES를 이용한 전원공급 안정화장치 시뮬레이션을 위한 PSCAD/EMTDC 컴포넌트 모델링 (Component Modeling of Micro SMES Based Design of Stabilizer Simulation for Power Supply using PSCAD/EMTDC)

  • 김봉태;박민원;성기철;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.228-230
    • /
    • 2002
  • Recently, electric power reliability of our country has been improved. However, there are still remaining problems which are short-duration variations like instantaneous and momentary interruption and voltage sag by nature calamity ; typhoon, lightning, snow, etc. Besides, power quality ; harmonics, caused by using power electronics equipments, become a hot issue Malfunction of controller and stop machinery, and losing the important data are caused by poor power quality at a couple of second. Due to those, UPS, which is made up battery, has being used, but there are several disadvantages ; long charge and discharge time, environmental problem by acid and heavy metal, and short life time. As generally know, micro-SMES is a method to settle those mentioned. However, there need huge system apparatuses in order to verify the effect of system efficiency and stability considering the size of micro-SMES, the sort of converter type, and various conditions ; inner temperature, magnetic field, quench characteristic of micro-SMES, and etc. In this paper, in order to bring the mentioned above to a settlement, a micro-SMES is modeled with characteristics of micro-SMES is interfaced to EMTOC program using Fortran program interface method. We obtained hopeful answers and made the simulation model of micro SMES.

  • PDF

2차회로의 직.병렬연결에 따른 하이브리드형 초전도 한류기의 특성 (Characteristics of a Hybrid-type SFCL with Serial and Parallel Connection of Secondary Circuit)

  • 조용선;박형민;남긍현;이나영;한태희;최효상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.393-395
    • /
    • 2006
  • We investigated the operational characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the serial and parallel connections of secondary circuits. The hybrid-type SFCL consists of a transformer, which has a primary winding and several secondary windings with $YBa_2Cu_3O_7$ films connected in series and parallel. In order to increase the capacity of the SFCL, the serial connection between each current limiting unit is necessary. The hybrid-type SFCL with the serial connection in secondary circuits could show superior characteristics than those of the parallel connections in the current limiting and quench time. The resistances generated in the superconducting units were also lowered at the parallel connections. We confirmed that the parallel connection reduced the power burden of each superconducting unit under the same conditions because of the simultaneous quenching between superconducting units.

  • PDF

변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of Flux-Lock Type SFCL Using a Transformer Winding)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.136-140
    • /
    • 2011
  • The fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) using a transformer winding were investigated. The suggested flux-lock type SFCL consists of two parallel connected coils on an iron core and the transformer winding connected in series with one of two coils. In this SFCL, the high-TC superconducting (HTSC) element was connected with the secondary side of the transformer. The short-circuit experimental devices to analyze the fault current limiting characteristics of the flux-lock type SFCL using the transformer winding were constructed. Through the short-circuit tests, the flux-lock type SFCL using transformer winding was shown to perform more effective fault current limiting operation compared to the previous flux-lock type SFCL without the transformer winding from the viewpoint of the quench occurrence and the recovery time of the HTSC element.

Au/YBCO 박막 곡선에서의 회복 분석 (Analysis on Recovery in Au/YBCO thin Film Meander Lines)

  • 김혜림;임성우;오성용;현옥배
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.119-125
    • /
    • 2007
  • We investigated recovery in $Au/YBa_2Cu_3O_7$ (YBCO) thin film meander lines on sapphire substrates. The meander lines were fabricated by patterning YBCO films coated with gold layers. The lines were subjected to simulated AC fault current and then small current was applied for recovery measurements. The samples were immersed in liquid nitrogen during the experiment. After the fault, the resistance decreased linearly, first slowly and then fast to zero. The initial slow decrease was due to the decrease of the meander line temperature, whereas the fast decrease was originated from the transition from the normal state to the superconducting state. The recovery speed depended on the size of samples, and was faster in the smaller samples during the whole period of recovery. The experimental results were analyzed quantitatively with the concept of heat transfer within the sample and to the surrounding liquid nitrogen. A heat balance equation was solved for the initial phase of recovery, and an expression for the time dependence of resistance was obtained. The result agreed with data well.

  • PDF

Coated conductor를 이용한 히터트리거 방식의 영구전류 스위치의 제작과 실험 (Fabrication and test of heater triggered persistent current switch using coated conductor tapes)

  • 김영재;양성은;박동근;조대호;안민철;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2039-2040
    • /
    • 2006
  • Persistent current switch (PCS) system in NMR, MRI, MAGLEV and SMES has many advantages, such as uniformity and durability of magnetic field and reducing a thermal loss, which enable many superconducting application to operate effectively. This paper deals with fabrication and test of heater trigger persistent current switch using coated conductor (CC) which has high n-index, critical current independency from external magnetic field and adaptable selectivity of stabilizer. PCS system consists of magnet power supply for energizing current to a magnet, heater, switch and magnet using coated conductor tape. Finite element method (FEM) is used to simulate thermal quench (switching) characteristic and design heater trigger. With FEM simulation, optimal length of heater is calculated by temperature and time analysis. Fabrication of PCS system and test of heater trigger characteristic were performed and compared with simulation result. This paper would be the foundation of researches of superconducting switching application.

  • PDF

하이브리드형 초전도 한류기의 동작 특성 (Operating Characteristics of Hybrid Type Superconducting Fault Current Limiter)

  • 조용선;남긍현;임성훈;최효상
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권6호
    • /
    • pp.255-258
    • /
    • 2006
  • We investigated the operating characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the inductance of secondary windings. The hybrid type SFCL consists of a transformer that has a primary winding and a secondary winding with serially connected $YBa_2Cu_3O_7$ (YBCO) films. The resistive-type SFCL has difficulty when it comes to raising the capacity of the SFCL due to slight differences of critical current densities between units and structure of the SFCL. The hybrid-type SFCL with closed-loop is able to achieve capacity increase through the electrical isolation and reduction of the inductance of the secondary winding with a superconducting element of the same critical current. On the other hand, the current limiting characteristics were nearly identical in the hybrid-type SFCL with open-loop compared to closed-loop, but quench time was longer than the hybrid-type SFCL with closed-loop. We confirmed that the capacity of the SFCL was increased effectively by the reduced inductance of the secondary winding. In addition, the power burden of the system also could be lowered by reducing the inductance of secondary winding.

Ursolic Acid Reduces Mycobacterium tuberculosis-Induced Nitric Oxide Release in Human Alveolar A549 cells

  • Zerin, Tamanna;Lee, Minjung;Jang, Woong Sik;Nam, Kung-Woo;Song, Ho-yeon
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.610-615
    • /
    • 2015
  • Alveolar epithelial cells have been functionally implicated in Mycobacterium tuberculosis infection. This study investigated the role of ursolic acid (UA)-a triterpenoid carboxylic acid with potent antioxidant, anti-tumor, anti-inflammatory, and anti-tuberculosis properties in mycobacterial infection of alveolar epithelial A549 cells. We observed that M. tuberculosis successfully entered A549 cells. Cytotoxicity was mediated by nitric oxide (NO). A549 toxicity peaked along with NO generation 72 h after infection. The NO generated by mycobacterial infection in A549 cells was insufficient to kill mycobacteria, as made evident by the mycobacteria growth indicator tube time to detect (MGIT TTD) and viable cell count assays. Treatment of mycobacteria-infected cells with UA reduced the expression of inducible nitric oxide synthase, NO generation, and eventually improved cell viability. Moreover, UA was found to quench the translocation of the transcription factor, nuclear factor kappa B (NF-${\kappa}B$), from the cytosol to the nucleus in mycobacteria-infected cells. This study is the first to demonstrate the cytotoxic role of NO in the eradication of mycobacteria and the role of UA in reducing this cytotoxicity in A549 cells.

일체화된 삼상 자속구속형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석 (Analysis of Current Limiting Characteristics According to Fault Angles in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 박충렬;두호익;임성우;현옥배;임성훈;박형민;조용선;남긍현;이나영;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.255-256
    • /
    • 2006
  • In this paper, we investigated the. characteristics of fault current limiting according to fault angle in the integrated three-phase flux-lock type SFCL in fault types such as the single-line-to-ground fault, the double-line-to-ground fault and the three-line-to-ground fault. When the SFCL is operating under normal condition, the magnetic flux generated between primary and secondary coils of each single phase is canceled out perfectly, so that the impedance of the SFCL is also not generated and the power system can be operated normally without any loss, However, if a fault occurs even in any phase out of three phases, quench happened in SFCL elements and the current flowing secondary coil is restricted abruptly. Finally, the balance of magnetic flux in whole SFCL system is destroyed, and the fault currents in every phase could be limited at the same time irrespective of the fault types. As a result, the developed SFCL in this study were operated normally as expected and the purpose of the integration of 3 phase current limiting was also achieved successfully. However, the fault current limiting characteristics of the SFCL was dependant on the quench characteristics of HTSC elements in each phase, and it was expected that the improvement of the SFCL could be possible through the introduction of HTSC elements which have better critical characteristics.

  • PDF

Heat transfer monitoring between quenched high-temperature superconducting coated conductors and liquid nitrogen

  • Rubeli, Thomas;Colangelo, Daniele;Dutoit, Bertrand;Vojenciak, Michal
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권1호
    • /
    • pp.10-13
    • /
    • 2015
  • High-temperature superconducting coated conductors (HTS-CCs) are good candidates for resistive superconducting fault current limiter (RSFCL) applications. However, the high current density they can carry and their low thermal diffusivity expose them to the risk of thermal instability. In order to find the best compromise between stability and cost, it is important to study the heat transfer between HTS-CCs and the liquid nitrogen ($LN_2$) bath. This paper presents an experimental method to monitor in real-time the temperature of a quenched HTS-CC during a current pulse. The current and the associated voltage are measured, giving a precise knowledge of the amount of energy dissipated in the tape. These values are compared with an adiabatic numerical thermal model which takes into account heat capacity temperature dependence of the stabilizer and substrate. The result is a precise estimation of the heat transfer to the liquid nitrogen bath at each time step. Measurements were taken on a bare tape and have been repeated using increasing $Kapton^{(R)}$ insulation layers. The different heat exchange regimes can be clearly identified. This experimental method enables us to characterize the recooling process after a quench. Finally, suggestions are done to reduce the temperature increase of the tape, at a rated current and given limitation time, using different thermal insulation thicknesses.