• 제목/요약/키워드: Quench

검색결과 496건 처리시간 0.023초

초전도 케이블 계통에서의 켄치 모의 및 해석 (Quench Simulation and Analysis on Superconducting Cable Systems)

  • 김남열;이종범
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권1호
    • /
    • pp.13-21
    • /
    • 2004
  • In the design of superconducting cable systems, quench analysis have to be advanced for applying to a real systems. It is necessary to calculate the current, voltage and resistance during the quench. Simulation program named EMTDC was used to analyze the quench state. Normal zone evaluation and quench development with EMTDC are one of the major features of quench analysis. This paper presents the two kinds of quench control models which are the Switch Control Type and the Fortran Control Type. In case of the quench developing area, the simplicity cable model consist of resistance, inductance and capacitance. The impedance of the pipe type superconducting cable is calculated by numerical analysis method. The resistance and inductance increased during quench. However the variation have an effect on the fault current. The voltage was also developed by resistance and inductance. This paper presents the relationship between the current. voltage, resistance and inductance during quench.

고온 초전도체 팬케이크 코일의 퀜치 해석 (Quench Analysis in HTS Pancake Coil)

  • 박차식;안태길;박경우;김도형;차귀수;서정식
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.6-9
    • /
    • 2009
  • The thermal characteristics of quench propagation is a crucial problem for the stability of the superconductor. The objective of this study is to simulate the quench propagation with the variation of disturbance energy in Bi-2223/Ag HTS pancake coil. In this analysis, the temperature-time trace of a point away from heater was calculated under conditions of different quench energy. The critical disturbance energy between quench propagation and quench recovering was calculated, In addition, the minimum quench energy with different transport currents was obtained through the present simulation. These results are significant to the application of HTS.

펄스전류 운전에 따른 KSTAR PF 초전도자석의 퀜치 분석 및 퀜치 검출 시스템 운전 특성 (Quench Analysis and Operational Characteristics of the Quench Detection System for the KSTAR PF Superconducting Coils)

  • 추용;요네가와;김영옥;이현정;박갑래;오영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.20-25
    • /
    • 2009
  • The quench detection system of the KSTAR (Korea Superconducting Tokamak Advanced Research) primarily uses the resistive voltage measurement due to a quench. This method is to detect the resistive voltage generated by a quench, which is continuously maintained above the preset voltage threshold for a given holding time. As the KSTAR PF (Poloidal Field) coils are operated in the pulse current mode, the large inductive voltages are generated. Therefore the voltage threshold and the quench holding time should be determined by considering both the inductive voltages measured during the operation, and the maximum conductor temperature rise through the quench analysis. In this paper, the compensation methods for minimizing the inductive voltages are presented for the KSTAR PF coils. The quench hot spot analysis of the PF coils was carried out by the analytical and numerical methods for determining the proper values of the quench voltage threshold and the allowable quench protection delay time.

과도전류 후의 고온초전도체 박막의 퀜치/회복 특성 (Quench and recovery characteristics of HTS film after fault current)

  • 박을주;김진석;설승윤
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.16-19
    • /
    • 2003
  • Quench and recovery process of high-temperature-superconductor (HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current. the HTS film experiences the quench state. current sharing state. and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results. and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

고온초전도체 박막의 퀜치/회복 특성 (Quench and recovery characteristics of HTS film after fault current)

  • 설승윤;김진석;박을주
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.181-184
    • /
    • 2003
  • Quench and recovery process of high-temperature -superconductor (HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current, the HTS film experiences the quench state, current sharing state, and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results, and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

  • PDF

저항형 초전도 한류기에서의 퀀치 전파 (Quench propagation in resistive SFCL)

  • 김혜림;현옥배;최효상;황시돌;김상준
    • 한국전기전자재료학회논문지
    • /
    • 제13권4호
    • /
    • pp.337-342
    • /
    • 2000
  • We fabricated resistive superconducting fault current limiters based on YB $a_{2}$/C $u_{3}$/ $O_{7}$ thin films and investigated their quench propagation characteristics. The YB $a_{2}$/C $u_{3}$/ $O_{7}$ films was coated with a gold layer and patterned into 1 mm wide meander lines by photolithography. The quench was concluded to start locally and propagates until completed. The quench propagation characteristics were explained based on the heat transfer within the film as well as between the film and the surrounding liquid nitrogen. The quench completion time depended strongly on potential fault current amplitude and not significantly on fault angle which indicates that the quench propagation speed is affected more by heat dissipation rate than by fault current increase rate. The quench completion time was 1 msec at the fault current of 65 $A_{peak/{\ak}}$.

  • PDF

금선 히터가 있는 금/YBCO 박막 선에서의 퀜치 분포 (Quench Distribution in AU/YBCO Thin Film Meander Lines with a Au Meander Line Heater)

  • Kim, H. R.;J. W. Shim;O. B. Hyun;J. M. Oh
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.118-123
    • /
    • 2004
  • We investigated quench distribution in AU/YBCO thin film meander lines with a heater. Quench distribution during faults is important for superconducting fault current limter applications, because uniform quench allows application of higher voltages across the meander lines. AU/YBCO thin films grown on sapphire substrates were patterned into meander lines by photolithography. Gold films grown on the rear sides of the substrates were also patterned into meander lines, and used as heaters. Meander lines on the front and the rear sides were connected in parallel. The meander lines were subjected to simulated AC fault currents for quench measurements during faults. They were immersed in liquid nitrogen during the experiment for effective cooling. Resistance of the AU/YBCO meander lines initially increased more rapidly with the rear heater than without, and consequently the fault current was limited more. The resistance subsequently became similar, The resistance distribution was more uniform with the heater, especially during the initial quench. Quench was completed more uniformly and significantly earlier. This resulted in uniform distribution of dissipated power. These results could be explained with the concept of quench propagation, which was accelerated by heat transfer across the substrate from the rear heater.

  • PDF

대구경 초전도 코일의 ?치 전류 특성 (Characteristics of the Quench Current of Superconducting Coils with Large Bore)

  • 조전욱;배준한;김해종;심기덕;성기철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권6호
    • /
    • pp.368-371
    • /
    • 2004
  • The quench current characteristics of the superconducting solenoids with large diameter were experimentally investigated. Three solenoids with inside diameter of 450mm were fabricated with different tensions and different types of epoxy applications. The quench current of each solenoid was measured according to the various ramping rates of current. The highest quench current was obtained in the solenoid impregnated with epoxy after winding with tension of 20 percents of the yield strength of the superconducting wire. It was found that the quench currents were almost independent of the ramp rate of current. From the results, although the training effect in the solenoid appeared with epoxy impregnation, the quench current of solenoid impregnated with epoxy was higher than that without epoxy impregnated The test results are presented and discussed.

MRI용 초전도 마그네트의 퀜치보호회로에 대한 연구 (Study on the quench protective circuit for superconducting MR)

  • 고락길;배준한;심기덕;권영길;류강식
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.80-83
    • /
    • 2001
  • We studied on effective quench protection method to prevent damage from unexpected quench of superconducting magnet for magnetic resonance imaging. And we suggested quench protection circuit that is combined with several protection techniques. This circuit has the capacity to maintain the symmetric nature of the magnetic field and the active shielding effect and to protect shim coils during a quench.

  • PDF

과도전류 후의 고온초전도체 박막의 퀜치/회복 특성 (Quench and recovery characteristics of HTS film after fault current)

  • 김진석;박을주;설승윤
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.272-275
    • /
    • 2003
  • Quench and recovery process of high-temperature-superconductor(HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current, the HTS film experiences the quench state, current sharing state, and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results, and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

  • PDF