• Title/Summary/Keyword: Quasicrystal

Search Result 13, Processing Time 0.026 seconds

Polyhedral Surface Development Using Quasicrystal System (준결정 시스템을 이용한 다면체 곡면 개발)

  • Kim, Seung-Deog;Lee, Kyoung-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.67-73
    • /
    • 2016
  • This paper is a study on Development of polyhedral surfaces Quasicrystal System. Quasicrystal is the quasi-crystalline material, which is the intermediate material of the crystalline material and non-crystalline material. Quasicrystal is a structures that is ordered but not periodic, the basic form is a rhombus. These studies in the field of chemistry will proceed actively studied, in the field of construction a situation that still insufficient research. Therefore, in this paper, we presents the analysis of Quasicrystal system, and the research on the applicability of as dome structures. This paper described some examples of polyhedron form, and method of applying Quasicrystal system.

Structural System Development by Nonlinear Analysis of Polyhedron Curved Space Structure Using Quasicrystal System (준결정 시스템을 이용한 다면체 곡면 대공간구조의 비선형해석을 통한 구조시스템 개발)

  • Kim, Seung-Deog;Lee, Kyoung-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.125-132
    • /
    • 2016
  • This paper is a study on the nonlinear behavior of polyhedron curved space roof as building structures of quasicrystal system. The quasicrystal is made up of two kinds of parallel hexahedrons, and all the line elements of the parallelepiped have the same length. The quasicrystal design grid dome has a pentagonal symmetry and all members have the same length. This paper described form of design gird dome, and showed the analysis conditions. Also, The displacement-load curve is shown through the analysis and we grasped the flow of the load and forces through analysis of design grid dome applied quasicrystal system.

Ti-based Quasicrystal Layers Produced by Plasma Thermal Spraying

  • Takasaki, Akito;Uematsu, Susumu;Kelton, K.F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.51-52
    • /
    • 2006
  • [ $Ti_{45}Zr_{38}Ni_{17}$ ] powders were thermally sprayed onto mild steel substrates in air and under a reduced pressure of argon. Several oxides were formed after thermally-spraying the mechanically-alloyed powders in air. After spraying in a reduced pressure of argon, the coating layers obtained from the gently mixed powders consisted of the elemental metals, but an amorphous phase primarily appeared in the thermally-sprayed mechanically-alloyed powders, which transformed into the icosahedral quasicrystal phase and a minor $Ti_2Ni-type$ crystal phase after annealing at 828 K. The Vickers hardness and the contact angle with pure water for the quasicrystal layers were about 7 GPa and $92^{\circ}$ respectively.

  • PDF

The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals

  • Gao, Yang;Yu, Lian-Ying;Yang, Lian-Zhi;Zhang, Liang-Liang
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.411-427
    • /
    • 2015
  • Based on linear elastic theory of quasicrystals, various equations and solutions for quasicrystal beams are deduced systematically and directly from plane problem of two-dimensional quasicrystals. Without employing ad hoc stress or deformation assumptions, the refined theory of beams is explicitly established from the general solution of quasicrystals and the Lur'e symbolic method. In the case of homogeneous boundary conditions, the exact equations and exact solutions for beams are derived, which consist of the fourth-order part and transcendental part. In the case of non-homogeneous boundary conditions, the exact governing differential equations and solutions under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively. In two illustrative examples of quasicrystal beams, it is shown that the exact or accurate analytical solutions can be obtained in use of the refined theory.

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

Precipitation of Icosahedral Qusicrystal Phase in Mg-Zn-Y(ZW61) alloy (Mg-Zn-Y(ZW61) 합금에서 Icosahedral 준결정상의 석출)

  • Kwak, Ho-Yeon;Lee, Kap-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • Precipitation of the ordered icosahedral quasicrystal in Mg-6wt%Zn-1wt%Y alloy has been characterized by transmission electron microscopy observations. The lamellar-type icosahedral qusicrystal phases (I-phase) with the face-centered icosahedral (FCI) structure are observed in alloy after solution treatment at $550^{\circ}C$. In the alloy annealed at $400^{\circ}C$, polygon-shaped I-phases are observed in the ${\alpha}$-Mg matrix. The interfaces of the I-phase with the matrix are facetted and the facets are on five-fold and two- fold plane of the I-phase. The orientation relationship of the I-phase with the matrix is determined to be $[I5]_I//[001]_{Mg}$, $(2f)_I//(2\overline{1}0)_{Mg}$ and $[I2]_I//[311]_{Mg}$, $(5f)_I//(0\overline{1}1)_{Mg}$. The icosahedral grains are occasionally found to be twinned with one of the five-fold axis as the twin axis. The twin boundaries appear to be fairly straight and perpendicular to the fivefold twin axis. The icosahedral twin can be expressed as a rotation of $63.4^{\circ}$ or $116.62^{\circ}$ around two fold zone axis.

Fabrication of photonic quasicrystals using multiple-exposure holographic method and bandgap properties (다중-노출 홀로그라피 방법을 이용한 광자 준결정 제작 및 밴드갭 특성)

  • Yun, Sand-Don;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.8-8
    • /
    • 2008
  • Two-dimensional photonic quasicrystal (PQCs) template patterns have been fabricated on a $1.1{\mu}m$-thick DMI-150 photoresist using a multiple-exposure holographic method. A 442-nm HeCd laser was utilized as a light source and the holographic exposure was carried out at a fixed angle of $\theta=6^{\circ}$. After the first holographic exposure, the sample was rotated to a proper angle and the second exposure was performed to the same manner. This exposure process was repeated n/2 times to obtain n-fold symmetric PQC patterns and then the sample was developed. The fabricated PQCs exhibited 8, 10 and 12-fold rotational symmetry and the diffraction patterns using a 632.8-nm HeNe laser were observed for n-rotation symmetry corresponding n-fold PQCs. The fabricated PQC template patterns were examined using scanning electron microscopy(SEM). Transmission spectra were measured fourier transform infrared(FTIR) spectrometer.

  • PDF

Fabrication of Photonic Quasicrystals using Multiple-exposure Holographic Method (다중-노출 홀로그라피 방법을 이용한 광자준결정 제작)

  • Yun, Sang-Don;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.829-834
    • /
    • 2008
  • Two-dimensional photonic quasicrystal (PQCs) template patterns have been fabricated on a 1.1 ${\mu}m$-thick DMI-150 photoresist using a multiple-exposure holographic method. A 442-nm HeCd laser was utilized as a light source and the holographic exposure was carried out at a fixed angle of ${\theta}$ = 6$^{\circ}$. After the first holographic exposure, the sample was rotated to a proper angle and the second exposure was performed to the same manner. This exposure process was repeated n/2 times to obtain n-fold symmetric PQC patterns and then the sample was developed. The diffraction patterns of the fabricated PQC template were observed using a 632.8-nm HeNe laser. The fabricated PQCs exhibited 8, 10 and 12-fold rotational symmetry, which was in a good agreement with the interference simulation results. In addition, the diffraction patterns with n-rotation symmetry were observed for the corresponding n-fold PQCs. We believe that the multiple-exposure holography is a good method to fabricate the mesoscale PQCs with a high rotational symmetry.

Formation of Icosahedral Phase in Bulk Glass Forming Ti-Zr-Be-Cu-Ni Alloy

  • Park, Jin Man;Lee, Jun Hyeok;Jo, Mi Seon;Lee, Jin Kyu
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.58-62
    • /
    • 2015
  • Formation of an icosahedral phase in the bulk glass forming $Ti_{40}Zr_{29}Be_{14}Cu_9Ni_8$ alloy during crystallization from amorphous phase and solidification from melt is investigated. The icosahedral phase with a size of 10 to 15 nm forms as a thermodynamically stable phase at intermediate temperature during the transformation from amorphous to crystalline phases such as Laves and ${\beta}$-(Ti-Zr) phases, indicating that the existence of the icosahedral cluster in the undercooled liquid. On the other hand, the icosahedral phase forms as a primary solidification phase even though the Laves phase is stable at high temperature, which is can be explained based on the high nucleation rate of icosahedral phase relative to that of competing crystalline Laves phase due to lower interfacial energy between icosahedral and liquid phases.