• Title/Summary/Keyword: Quasi-variational inequalities

Search Result 26, Processing Time 0.021 seconds

GENERALIZED STRONGLY NONLINEAR QUASI-VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.253-264
    • /
    • 1999
  • In this paper we introduce and study a new class of vari-ational inequalities which are called the generalized strongly nonlin-ear quasi-variational inequalities. An algorithm for finding the ap-proximate solution of generalized strongly nonlinear quasi-variational inequalities is also given. These variational inequalities include the previously known classes of variational inequalities as special cases.

MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.13 no.3 s.33
    • /
    • pp.197-206
    • /
    • 2006
  • This paper introduces a class of multivalued mixed quasi-variational-like ineqcalities and shows the existence of solutions to the class of quasi-variational-like inequalities in reflexive Banach spaces.

  • PDF

GENERALIZED VECTOR-VALUED VARIATIONAL INEQUALITIES AND FUZZY EXTENSIONS

  • Lee, Byung-Soo;Lee, Gue-Myung;Kim, Do-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.609-624
    • /
    • 1996
  • Recently, Giannessi [9] firstly introduced the vector-valued variational inequalities in a real Euclidean space. Later Chen et al. [5] intensively discussed vector-valued variational inequalities and vector-valued quasi variationl inequalities in Banach spaces. They [4-8] proved some existence theorems for the solutions of vector-valued variational inequalities and vector-valued quasi-variational inequalities. Lee et al. [14] established the existence theorem for the solutions of vector-valued variational inequalities for multifunctions in reflexive Banach spaces.

  • PDF

GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Khan M. Firdosh;Salahuddin Salahuddin
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.689-700
    • /
    • 2006
  • In this paper, we introduce a new class of generalized nonlinear multivalued mixed quasi-variational-like inequalities and prove the existence and uniqueness of solutions for the class of generalized nonlinear multivalued mixed quasi-variational-like inequalities in reflexive Banach spaces using Fan-KKM Theorem.

A REMARK ON THE REGULARIZED GAP FUNCTION FOR IQVI

  • Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.145-150
    • /
    • 2015
  • Aussel et al. [1] introduced the notion of inverse quasi-variational inequalities (IQVI) by combining quasi-variational inequalities and inverse variational inequalities. Discussions are made in a finite dimensional Euclidean space. In this note, we develop an infinite dimensional version of IQVI by investigating some basic properties of the regularized gap function of IQVI in a Banach space.

MIXED QUASI VARIATIONAL INEQUALITIES INVOLVING FOUR NONLINEAR OPERATORS

  • Pervez, Amjad;Khan, Awais Gul;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.17-35
    • /
    • 2020
  • In this paper we introduce and consider a new class of variational inequalities with four operators. This class is called the extended general mixed quasi variational inequality. We show that the extended general mixed quasi variational inequality is equivalent to the fixed point problem. We use this alternative equivalent formulation to discuss the existence of a solution of extended general mixed quasi variational inequality and also develop several iterative methods for solving extended general mixed quasi variational inequality and its variant forms. We consider the convergence analysis of the proposed iterative methods under appropriate conditions. We also introduce a new class of resolvent equation, which is called the extended general implicit resolvent equation and establish an equivalent relation between the extended general implicit resolvent equation and the extended general mixed quasi variational inequality. Some special cases are also discussed.

GENERALIZED BI-QUASI-VARIATIONAL INEQUALITIES FOR QUASI-PSEUDO-MONOTONE TYPE III OPERATORS ON COMPACT SETS

  • Mohammad S. R. Chowdhury;Liliana Guran
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.825-839
    • /
    • 2024
  • A new type of more general form of variational inequalities for quasi-pseudo-monotone type III and strong quasi-pseudo-monotone type III operators has been obtained on compact domains in locally convex Hausdorff topological vector spaces. These more general forms of variational inequalities for the above types of operators used the more general form of minimax inequality by Chowdhury and Tan in [3] as the main tool to derive them. Our new results established in this paper should have potential applications in nonlinear analysis and related applications, e.g., see Aubin [1], Yuan [11] and references wherein.

GENERALIZED SET-VALUED MIXED NONLINEAR QUASI VARLIATIONAL INEQUALITIES

  • H, M-U
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.73-90
    • /
    • 1998
  • In this paper we introduce and study a number of new classes of quasi variational inequalities. using essentially the projection technique and its variant forms we prove that the gen-eralized set-valued mixed quasivariational inequalities are equivalent to the fixed point problem and the Wiener-Hopf equations(normal maps). This equivalence enables us to suggest a number of iterative algorithms solving the generalized variational inequalities. As a special case of the generalized set-valued mixed quasi variational in-equalities we obtain a class of quasi variational inequalities studied by Siddiqi Husain and Kazmi [35] but there are several inaccuracies in their formulation of the problem the statement and the proofs of the problem the statement and the proofs of their results. We have removed these inaccuracies. The correct formulation of thir results can be obtained as special cases from our main results.

GENERALIZED BI-QUASI-VARIATIONAL-LIKE INEQUALITIES ON NON-COMPACT SETS

  • Cho, Yeol Je;Chowdhury, Mohammad S.R.;Ha, Je Ai
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.933-957
    • /
    • 2017
  • In this paper, we prove some existence results of solutions for a new class of generalized bi-quasi-variational-like inequalities (GBQVLI) for (${\eta}-h$)-quasi-pseudo-monotone type I and strongly (${\eta}-h$)-quasi-pseudo-monotone type I operators defined on non-compact sets in locally convex Hausdorff topological vector spaces. To obtain our results on GBQVLI for (${\eta}-h$)-quasi-pseudo-monotone type I and strongly (${\eta}-h$)-quasi-pseudo-monotone type I operators, we use Chowdhury and Tan's generalized version of Ky Fan's minimax inequality as the main tool.