• 제목/요약/키워드: Quasi-Static Load

검색결과 268건 처리시간 0.026초

Quasi-Static Analysis of Block Impact Against the Ground Due to Sling Failure During Block Lifting (권상 작업 중 슬링 파손으로 인한 블록 지상 낙하 충격에 대한 준정적 해석)

  • Kim, Seon-Yeob;Lee, Tak-Kee;Yoon, Jung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제58권2호
    • /
    • pp.84-89
    • /
    • 2021
  • Recently, shipyards are making many efforts to reduce the number of the mounted blocks by increasing the block size. This is to improve productivity and reduce related costs by minimizing block movement and shortening the building period. However, as the blocks become larger, the weight increases considerably. If the target block has a damage due to an unexpected accident during block lifting, it may seriously cause a problem of the reusability of the block. In this study, a large-sized block of the offshore structure weighing 480 tons was lifting with a total of seven sling belts, and one sling belt was broken while it was moving, resulting in a situation in which a part of the edge of the block collided with the ground. The aim of this paper is to verify the structural integrity of the block that directly collides with the ground in the form of free fall due to the sling breakage. Considering that the hook loads acting on several sling belts holding the block are redistributed when a sling belt is broken, the hook loads were recalculated at the angle just before the sling breakage. These loads were used to check the safety of the sling belts. In addition, FE analysis was performed by calculating the amount of impact from the free fall condition, obtaining the impact area by using Hertz's contact theory, and then applying the impact load to the area.

Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71% (형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제26권6호
    • /
    • pp.102-111
    • /
    • 2022
  • The aim of this study is to assess the seismic performance of octagonal hollow cross section reinforced concrete bridge pier, and to investigate the effect of longitudinal reinforcement ratios on the failure behavior. Four octagonal hollow section RC bridge columns of small scale model were tested under a quasi-static cyclically reversed horizontal load with constant axial load. The volumetric ratio of transverse spiral hoop of all specimens was maintained constant(0.206%), the ratios of longitudinal reinforcement were varied(2.36 ~ 4.71%). Failure behavior and seismic performance were investigated. Three specimens with the exception of lap spliced specimen showed flexure-shear failure at final stage. The test results with the exception of lap spliced specimen showed that the displacement ductility factor and accumulated energy dissipation decreased in inverse proportion to the ratio of longitudinal steel.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection - (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 -)

  • Cho, Jin-Goo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제40권5호
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제27권7호
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • 제24권3호
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Seismic Performance Assessment of RC Circular Column-Bent Piers Subjected to Bidirectional Quasi-Static Test (이축방향 유사정적 실험에 의한 이주형 철근콘크리트 원형 교각의 내진 성능평가)

  • Chung Young Soo;Park Chang Kyu;Lee Beom Gi;Song Hee Won
    • Journal of the Korea Concrete Institute
    • /
    • 제17권1호
    • /
    • pp.121-128
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. One single column specimen was additionally made to comparatively evaluate the seismic response of RC column-bent piers. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1 f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich

  • Xiao, Wei;Yan, Chang;Tian, Weibo;Tian, Weiping;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.301-308
    • /
    • 2018
  • Properties of AFS vary with the changes in the face-sheet materials. Hence, the performance of AFS can be optimized by selecting face-sheet materials. In this work, three types of face-sheet materials representing elastic-perfectly plastic, elastic-plastic strain hardening and purely elastic materials were employed to study their effects on the flexural behavior and failure mechanism of AFS systematically. Result showed face-sheet materials affected the failure mechanism and energy absorption ability of AFS significantly. When the foam cores were sandwiched by aluminum alloy 6061, the AFS failed by face-sheet yielding and crack without collapse of the foam core, there was no clear plastic platform in the Load-Displacement curve. When the foam cores were sandwiched by stainless steel 304 and carbon fiber fabric, there were no face-sheet crack and the sandwich structure failed by core shear and collapse, plastic platform appeared. Energy absorption abilities of steel and carbon fiber reinforced AFS were much higher than aluminum alloy reinforced one. Carbon fiber was suggested as the best choice for AFS for its light weight and high performance. The versus strength ratio of face sheet to core was suggested to be a significant value for AFS structure design which may determine the failure mechanism of a certain AFS structure.

Performance of Repaired Structural Walls with Different Shear Span Ratios (전단스팬비가 다른 보수된 벽체의 성능평가)

  • Han, Sang-Whan;Oh, Chang-Hak;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study is to evaluate the capacities of repaired structural walls with different shear span ratios(1, 2, 3). Experimental tests were carried out. In this study three isolated large-scale wall specimens were made. The original wall specimens were tested until the drift reaches more than 3%. The region of the damaged specimen with the crack larger than 0.2 mm is replaced by new concrete. Also, severly distorted reinforcements were also replaced by new reinforcements. The crack smaller than 0.2 mm was cured by epoxy resin. Because of the space limitation of the laboratory the dimensions of all walls are the same. The shear-span ratio was controlled by the combination of axial and lateral force using the special test setting. All specimens were tested using the incremental quasi static cyclic load until failure occurs. Test results show that strength of repaired walls was almost equivalent to that of original walls. However, deformation capacities of repaired wall specimens are inferior to the original wall specimens.

A Study on the Fracture Behavior of Composite Laminated T-Joints Using AE (AE를 이용한 복합재료 T 조인트부의 파괴거동에 관한 연구)

  • Kim, J.H.;Ahn, B.W.;Sa, J.W.;Park, B.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제19권4호
    • /
    • pp.277-287
    • /
    • 1999
  • Quasi-static tests such as monotonic tension and loading/unloading tension were performed to investigate the bond characteristics and the failure processes for the T-joint specimens made from fiber/epoxy composite material. Two types of specimens, each consists of two components, e. g. skin and frame. were manufactured by co-curing and secondary bonding. During the monotonic tension test, AE instrument was used to predict AE signal at the initial and middle stage of the damage propagation. The damage initiation and progression were monitored optically using m (Charge Coupled Device) camera. And the internal crack front profile was examined using ultrasonic C-scan. The results indicate that the loads representing the abrupt increase of the AE signal are within the error range of 5 percent comparing to the loads shown in the load-time curve. Also it is shown that the initiation of crack occurred in the noodle region for both co-cured and secondarily bonded specimen. The final failure occurred in the noodle region for the co-cured specimen. but at the skin/frame termination point for the secondarily bonded specimen. Based on the results, it was found that two kinds of specimen show different failure modes depending on the manufacturing methods.

  • PDF