• 제목/요약/키워드: Quasi-Static Analysis Method

검색결과 181건 처리시간 0.027초

윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究) (Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing)

  • 안시영;김사수
    • 대한조선학회지
    • /
    • 제26권3호
    • /
    • pp.51-61
    • /
    • 1989
  • 최근(最近)의 배는 에너지 절약(節約)을 도모하기 위하여 프로펠러 회전수(回轉數)의 저속화(低速化)와 더불어 대형화(大型化)되고 있다. 이와 같은 결과(結果)로 선미관(船尾管)의 후부(後部) 베어링에는 집중하중(集中荷重)이 작용(作用)하게 되어 선박(船舶)의 운항능력(運航能力)을 상실할 정도의 대형사고(大型事故)가 일어나고 있는 예(例)가 많다. 이와 관련하여 최근(最近) 유막(油膜)을 고려한 선미관(船尾管) 베어링 해석(解析)에 관(關)한 연구(硏究)가 활발하게 이루워지고 있다. 본(本) 연구(硏究)에서는 지금까지 연구발표(硏究發表)된 유막(油膜)을 고려한 선미관(船尾管) 베어링에 대한 축(軸)의 위치(位置)를 추정(推定)하는 방법(方法)을 수정보완(修正補完)한 새로운 방법(方法)을 제시(提示)하였다. 즉 축계(軸系)에 대해서는 유한요소법(有限要素法)에 의한 삼차원(三次元) 구조해석방법(構造解析方法), 베어링 유막(油膜)은 유한요소법(有限要素法)에 의한 이차원(二次元) 유체역학해석방법(流體力學解析方法), 그리고 축계(軸系)와 베어링 유막간(油膜間)의 준정적(準靜的) 평형점(平衡點)을 구하기 위해서는 최적화(最適化) 기법(技法)이 사용된다. 본(本) 해석방법(解析方法)의 타당성(妥當性) 여부(與否)를 확인(確認)하기 위하여 Vorus 등이 사용(使用)한 시산대상선(試算對象船)에 대한 일련의 수치계산(數値計算)을 수행하고 동(同) 결과(結果)를 Vorus등의 연구 결과와 비교검토(比較檢討)하여 본 결과(結果), 비교적(比較的) 잘 일치(一致)하고 있음을 미루어 보아 본(本) 해석방법(解析方法)의 타당성(妥當性)이 확인(確認)되었다.

  • PDF

유한요소법에 의한 열점탄성 응력해석 (Thermoviscoelastic Stress Analysis by the Finite Element Method)

  • 심우진;박인규
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2148-2158
    • /
    • 1996
  • Uncoupled, quasi-static and linear thermoviscoelastic problems are analyzed in time domain by the finite element approximation which is developed using the principle of virtual work and viscoelasticity matrices instead of shear and bulk relaxation functions as in usual formulations. The material is assumed to be isotropic, homegeneous and thermorheologically simple, which means that the temperature-time equivalence postulate is effective. The stress-strain laws are expressed by relaxation-type hereditary integrals. In spatial and time discritizations, isoparametric quadratic quadrilateral finite elements and linear time variations are adopted. For explicit derivations, the viscoelastic material is assumed to behave standard linear solid in shear and elastically in dilatation. Two-dimensional examples are solved under general temperature distributions T = T(x, t), and compared with other opproximate solutions to show the versatility of the presented analysis.

수상함의 동적 레이더 반사면적 해석 기법 연구 (A Study on a Dynamic Radar Cross Section Analysis Technique for a Surface Warship)

  • 김국현;김진형;최태묵;김윤환;조대승
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.77-81
    • /
    • 2009
  • The radar cross section (RCS) of a warship is one of the most important design features in terms of her survivability in hostile environments. Ocean waves continuously changes the attitude of an objective warship to hostile radar and distorts the RCS as a result. This paper presents a dynamic RCS analysis technique and procedure that considers temporal ship motion. First, data sets are prepared for ship motions in 6 degrees of freedom, which are numerically simulated for an objective warship via frequency to time domain conversion with response amplitude operators and specified ocean wave spectra. Second, a series of RCS analysis models are transformed geometrically by referring to ship motion data sets. Finally, temporal RCS analyses are carried out with the RCS simulation code, SYSCOS. As an example, RCS analysis results are given for a virtual warship, which show that ship motions temporally change RCS values and cause RCS reduction compared with static value in terms of mean values.

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

보이드 위치에 따른 XLPE 전계분포 (Electric Field Distribution of XLPE due to Position of Void)

  • 박형준;김균식;신현택;이종필;김귀열;이수원;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.220-223
    • /
    • 2003
  • This paper is aimed at determining the e-field distribution by apply voltage of air void, which can be generate air void in the XLPE cable for ultra high voltage. E-field distribution had an effect in XLPE due to the type and position of void, compared and studied. This method of analysis is based on the quasi-static electromagnetic 3D simulation program by boundary element method (BEM): Applied AC 3[kV], discretization of 2000 elements, 4 angular periodicity, The result of experiment indicate that E-field distribution appeared the highest levels on the void position of electrode 2[nm] outer boundary and shape of the smallest inner angle in the void. This will serve to explain the XLPE cable degradation studied of possible, connected cable variation of position and shape of void effects to e-field concentration.

  • PDF

L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석 (Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel)

  • 유승룡;주호성;하수경
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

동적 유한요소해석을 이용한 Dent 발생에 대한 연구 (An Analysis of Dent Formation by Dynamic Finite Element Method)

  • 차성훈;신명수;김종봉
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구 (A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.