• 제목/요약/키워드: Quasi-Static Analysis Method

검색결과 181건 처리시간 0.03초

유한요소해석을 통한 전기 커넥터의 압착 품질 향상 (Quality Improvement for Crimping Process of Electrical Connector Using FEM Analysis)

  • 윤철호;박진기;최현순;김영석
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.229-235
    • /
    • 2009
  • This paper covers finite element simulations to evaluate the terminal crimping process of automobile electrical connector. Crimping is a classical technology process to ensure the electrical and the mechanical link between a wire and a terminal. Numerical modeling of the process is helpful to choose and to optimize the dimensions of the crimping part of the connector. In this paper, we discuss a 2D simulation of the crimping process, using explicit finite element methods (ABAQUS/Explicit) and we compare the results with experimental data from the industrial process of crimping (crimping height, crimping width and compressibility). The explicit method is preferred for the modeling of multi-contact problems, in spite of the quasi-static process of crimping. As compared with CAE analysis, a performance improvement makes certain of the truth of the matter.

와이어 어레이 형태의 내부 도체를 갖는 W-TEM cell의 전자계 분포 특성에 관한 연구 (A study on the electromagnetic field distributions in a W-TEM cell having wire array as an inner conductor)

  • 김명훈;이중근
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1576-1586
    • /
    • 1996
  • The subject of this paper is the analysis of a Wire-TEM cell(W-TEM cell) which has an inner wire array rather than a metallic septum;its basic structure is similiar to a NBS TEM cell. To verify improved performances of this W-TEM cell as a standard EM field generator, well-known quasi-static approximations are employed and their resultant ingegral equations are numerically analyzed by moment method. Although the electric field strength of a W-TEM cell is 1.4 dB lower than tht of a NBS TEM cell, the uniformity of EM field patterns in a W-TEM cell is improved. It is also shown that the EM field distortions resulting from loading by the conditing objects under test(loading effects), are decreased considerably. This paper also deals with the investigations about relationship between the EM field distributions and the number of wire composing the inner conductor. Finally, the experimental analysis is performed on the practical model which is built on the basis of the design variables brought out by the theoretical andnumerical analysis.

  • PDF

외연적 유한요소법을 이용한 적층제조 공정 중 응력 장 변화 계산 (Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method)

  • 양승용;김정한
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.318-324
    • /
    • 2020
  • In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.

Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method

  • Zhang, Biao;Ma, Zongyu;Wang, Xuan;Zhang, Jiasheng;Peng, Wenqing
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.43-54
    • /
    • 2020
  • The limit analysis and response surfaces method were combined to investigate the reliability of pressurized tunnel faces subjected to seismic force. The quasi-static method was utilized to introduce seismic force into the tunnel face. A 3D horn failure mechanism of pressurized tunnel faces subjected to seismic force was constructed. The collapse pressure of pressurized tunnel faces was solved by the kinematical approach. The limit state equation of pressurized tunnel faces was obtained according to the collapse pressure and support pressure. And then a reliability model of pressurized tunnel faces was established. The feasibility and superiority of the response surfaces method was verified by comparing with the Monte Carlo method. The influence of the mean of soil parameters and support pressure, variation coefficients, distribution type and correlation of c-φ on the reliability of pressurized tunnel faces was discussed. The reasonable safety factor and support pressure required by pressurized tunnel faces to satisfy 3 safety levels were presented. In addition, the effects of horizontal seismic force, vertical seismic force and correlation of kh-kv on the reliability of pressurized tunnel faces were also performed. The method of this work can give a new idea for anti-seismic design of pressurized tunnel faces.

Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method

  • Zhao, Yaobing;Sun, Ceshi;Wang, Zhiqian;Peng, Jian
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.487-500
    • /
    • 2014
  • An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

응력한계상태를 이용한 해상풍력발전기 재킷구조물의 지진신뢰성해석 (Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State)

  • 이기남;김동현
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.260-267
    • /
    • 2016
  • Considering the effect of dynamic response amplification, a reliability analysis of an offshore wind turbine support structure under an earthquake is presented. A reliability analysis based on the dynamic response requires a large amount of time when using not only a level 3 approach but also level 2 such as a first order reliability method (FORM). Moreover, if a limit state is defined by using the maximum stress at a structural joint where stress concentration occurs, a three-dimensional element should be used in the finite element analysis. This makes the computational load much heavier. To deal with this kind of problem, two techniques are suggested in this paper. One is the application of a quasi-static structural analysis that takes the dynamic amplification effect into account. The other is the use of a stress concentration factor to estimate the maximum local stress. The proposed reliability analysis is performed using a level 2 FORM and verified using a level 3 simulation approach.

파랑 중 스파 플랫폼의 시간영역 해석 (Time Domain Analysis of Spar Platform in Waves)

  • 이호영;임춘규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.167-171
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inetia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

  • PDF

Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint

  • Benchiha, Aicha;Madani, Kouider
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1017-1030
    • /
    • 2015
  • In this study, the finite element method was used to analyze the distribution of the adhesive shear stresses in the single-lap bonded joint of two plates 2024-T3 aluminum with and without defects. The effects of the adhesive properties (shear modulus, the thickness and the length of the adhesive were highlighted. The results prove that the shear stresses are located on the free edges of the adhesively bonding region, and reach maximum values near the defect, because the concentration of high stress occurs near this area.

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF

파랑 중 계류된 스파 플랫폼의 시간영역 해석 (Time Domain Analysis of a Moored Spar Platform in Waves)

  • 이호영;임춘규
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.