• Title/Summary/Keyword: Quasi static analysis

Search Result 415, Processing Time 0.021 seconds

Performance analysis on the nonlinear distortion in OFCDM downlink system using clipped multilevel-PSK (Clipped multilevel-PSK를 이용한 OFCDM 순방향 링크에서 비선형 왜곡에 대한 성능 분석)

  • 안치훈;최영관;장승훈;김동구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.17-26
    • /
    • 2003
  • To reduce the nonlinear distortion of high power amplifier(HPA) in down link OFCDM system to employ time domain spreading, we apply technology which transmits MPSK(Multilevel-PSK) signal after clipping on multilevel input signal of IFFT subcarrier. In case that the nonlinear distortion of HPA is considered in AWGN channel, performacne of clipping OFCDM system using extended m sequence is over 2.2㏈ better than that of OFCDM system using extended m sequence when the number of user is 8 and 16. In case that the nonlinear distortion of HPA is considered in quasi-static channel, performacne of clipping OFCDM system using extended m code is over 2㏈ better than that of OFCDM system using extended m sequence when the number of user is 8 and 16.

Analysis of Coplaner $LiNBO_3$ Waveguide Structures Applicable Electrooptic Modulator with FDTD method

  • Lee, Byung-Je;Byun, Joon-Ho;Kim, Nam-Young;Kim, Jong-Heon;Lee, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1211-1217
    • /
    • 2000
  • The three-dimensional finite-difference time-domain (FDTD) method and the two-dimensional quasi-static formulation have been used to calculate the characteristic impedance and the microwave effective index of coplanar waveguide structures on Lithium Niobate ($LiNBO_3$) single crystal substrates with a yttria-stabilized zirconia (YSZ) or $SiO_2$ buffer layer. The results shown can be a good source to predict the modulator characteristics. The effects of the thin buffer layer and anisotropy of the $LiNBO_3$ crystal (x-cut and z-cut) are discussed. The comparison between the FDTD and quasi-static results shows good agreement. In this paper, the efficient modeling technique of the FDTD method for the coplanar waveguide (CPW) structures based on an anisotropic substrate with a thin buffer layer is developed.

  • PDF

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Seismic Performance Assessment of Hollow Circular Reinforced Concrete Bridge Columns with Confinement Steel (중공원형 철근콘크리트 교각의 횡방향철근에 따른 내진성능평가)

  • Kim, Tae-Hoon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2012
  • The purpose of this study was to investigate the seismic behavior of hollow circular reinforced concrete bridge columns with confinement steel, and to develop improved seismic design criteria. Three hollow circular columns were tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The numerical method used gives a realistic prediction of the seismic performance throughout the loading cycles for the several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve current practice in the design and construction of hollow circular reinforced concrete bridge columns.

Analyses for RF parameters of Tunneling FETs (터널링 전계효과 트랜지스터의 고주파 파라미터 추출과 분석)

  • Kang, In-Man
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents the extraction and analysis of small-signal parameters of tunneling field-effect transistors (TFETs) by using TCAD device simulation. The channel lengths ($L_G$) of the simulated devices varies from 50 nm to 100 nm. The parameter extraction for TFETs have been performed by quasi-static small-signal model of conventional MOSFETs. The small-signal parameters of TFETs with different channel lengths were extracted according to gate bias voltage. The $L_G$-dependency of the effective gate resistance, transconductance, source-drain conductance, and gate capacitance are different with those of conventional MOSFET. The $f_T$ of TFETs is inverely proportional not to $L_G{^2}$ but to $L_G$.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

A Study on the Measurement for Table Deflection using Laser Interferometer and Simulation (레이저를 이용한 테이블 처짐 측정과 시뮬레이션에 관한 연구)

  • 김민주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 1999
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general study people who works on the spot has many problems on the data value. Also there are no satisfiable results until now in spite of many studys about this because the deflections of the table and the shaft supporting a workpiece influence, influence the accuracy of the table and shaft supporting a workpiece influence the accuracy of the workpiece. And there is doubt about the inspection method of measured error. In this paper Therefor we will help working more accurately on the spot by measuring analyzing displaying the defoec-tion of the table and support shaft when we load on the table and the support shaft of machining center using laser interfer-ometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tenden-cy by verifing the tendency of the error measured through the comparison of the simulated error measured through the comparison of the simulated error using ANSYS a common finite element analysis program which is able to measure heat deformation material deformation and error resulted from this study.

  • PDF

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

Shape Design of Hinge Stopper to Improve Refrigerator Door Opening Force (냉장고 도어 개방력 개선을 위한 힌지 스토퍼의 형상설계)

  • Seo, Ji-Hwan;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, the shape design optimization of a refrigerator door hinge stopper was performed to reduce the discrepancy in the opening forces of the left and right doors of a double-door refrigerator. A finite element model was constructed and analyzed by quasi-static analyses to evaluate the structural performance of the door hinge stopper. The reaction moment calculated at the hinge axis was used as a measure of the door opening and closing forces. The design objective is to increase the door opening force by 50% while maintaining the door closing force and the maximum stress calculated in the body of the hinge stopper at the current level. A new design concept with a contacting slot was proposed to decouple the door closing and opening forces. Shape optimization was performed to determine the dimensions of the new design of the hinge stopper, and the rib pattern was determined by topological optimization to further increase the door opening force. It was observed that the new design met all design requirements.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.