• Title/Summary/Keyword: Quasi Static Test

Search Result 333, Processing Time 0.026 seconds

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Performance of Repaired Structural Walls with Different Shear Span Ratios (전단스팬비가 다른 보수된 벽체의 성능평가)

  • Han, Sang-Whan;Oh, Chang-Hak;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study is to evaluate the capacities of repaired structural walls with different shear span ratios(1, 2, 3). Experimental tests were carried out. In this study three isolated large-scale wall specimens were made. The original wall specimens were tested until the drift reaches more than 3%. The region of the damaged specimen with the crack larger than 0.2 mm is replaced by new concrete. Also, severly distorted reinforcements were also replaced by new reinforcements. The crack smaller than 0.2 mm was cured by epoxy resin. Because of the space limitation of the laboratory the dimensions of all walls are the same. The shear-span ratio was controlled by the combination of axial and lateral force using the special test setting. All specimens were tested using the incremental quasi static cyclic load until failure occurs. Test results show that strength of repaired walls was almost equivalent to that of original walls. However, deformation capacities of repaired wall specimens are inferior to the original wall specimens.

The Effects of a Pilates Exercise Program using Self-Efficacy Sources in Elderly Women (여성노인의 자기효능자원을 이용한 필라테스 운동프로그램의 효과)

  • Lee, Choon-Ji;Choi, Yeon-Hee
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.117-131
    • /
    • 2015
  • Purpose: In this study a pilates exercise program using self-efficacy sources was provided for women 65 years of age or older and the effects on physical fitness, body composition, depression, self-efficacy, and health-related quality of life were tested. Methods: A quasi-experimental study employing a nonequivalent control group, pre-post design was conducted. The subjects consisted of 30 older women in the experiment group and 30 in the comparison group. The intervention was conducted twice a week for a period of 12 weeks. During this period, the pilates exercise program using self-efficacy sources (health education, phone coaching, mentoring, checking homework, recreation) were provided in the experiment group and pilates exercise program were offered in the comparison group. Chi-square test, independent t-test, ANCOVA were used for data analysis. Results: Following completion of the program, upper muscle strength (F=4.131, p=.047), low muscle strength (F=5.558, p=.022), upper flexibility (F=5.252, p=.026), static balance (F=5.957, p=.018), dynamic body balance & agility(F=18.971, p<.001), endurance(F=10.058, p=.002), muscle mass (F=5.748, p=.020), depression (F=4.493, p=.038), Self-efficacy (F=33.853, p<.001), and Health-related quality of life(F=5.586, p=.022) were significantly better in the experimental group. Conclusion: Findings from this study indicate that the pilates exercise program using self-efficacy sources are effective in enhancing physical fitness, body composition, self-efficacy and health-related quality of life and in decreasing depression for female elders and could therefore be regarded as positive program for promotion of physical and mental health for older women.

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 휨 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Son, Guk-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.52-62
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.

Behavior of Bellow Rectangular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중공구형교각의 거동특성)

  • Kim, Jae-Kwan;Kim, Ick-Hyun;Lim, Hyun-Woo;Lee, Jae-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.263-272
    • /
    • 2003
  • Scaled model tests were carried out to investigate a seismic behavior of reinforced concrete piers with hollow-rectangular section that were not detailed for seismic load. Additional lateral reinforcing bars were not provided that might be required for confinement against earthquake load. Two kinds of reinforcement details were considered for the longitudinal reinforcing bars: lap-spliced and continuous. In the lap-spliced model all longitudinal bars were lapped at the same height in a bottom plastic hinge zone. In the other model all longitudinal bars extended continuously throughout the height. The constructed models were subjected to quasi-static cyclic lateral loading in the presence of the constant vertical load. Limited ductile behavior was observed in the test of lap-spliced model and more ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

Dynamic Characteristics of Reinforced concrete axisymmetric shell with shape imperfection (형상불완전을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.151-159
    • /
    • 2000
  • Dynamic loading of structures often causes excursions of stresses will into the inelastic range and the influence of geometry changes on the response is also significant in may cases. In general , the shell structures designed according to quasi-Static analysis may collapse under condition of dynamic loading. Therefore, for a more realistic prediction on the lad carrying capacity of these shell. both material and geometric nonlinear effects should be considered. In this study , the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a Total Lagrangian formulation. the reinforcing bars are modeled by the equivalent steel layer at the location of reinforcements, and Von Mises yield criteria is adopted for the steel layer behavior. Also, Drucker-Prager yield criteria is applied for the behavior of concrete. the shape imperfection of dome is assumed as 'dimple type' which can be expressed Wd1=Wd0(1-(r-a)m)n while the shape imperfection of wall is assumed as sinusoidal curve which is Wwi =Wwo sin(n $\pi$y/l). In numerical test, three cases of shape imperfection of 0.0 -5.0cm(opposite direction to loading ; inner shape imperfection)and 5cm (direction to loading : outward shape imperfection) and thickness of steel layer determined by steel ratio of 0,3, and 5% were analyzed. The effect of shape imperfection and steel ratio and behavior characteristics of perfect shape shell and imperfect shape shell are identified through analysis of above mentioned numerical test. Dynamic behaviors of dome and wall according toe combination of shape imperfection and steel ratio are also discussed in this paper.

  • PDF

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.