• Title/Summary/Keyword: Quartz tube

Search Result 104, Processing Time 0.026 seconds

Graphitic Mesostructured Carbon from an Aliphatic Hydrocarbon Precursor

  • Kim, Chy-Hyung;Oh, Teresa
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1978-1980
    • /
    • 2009
  • A mesostructured form of carbon was fabricated from a template of mesostructured silica by using pentane, an aliphatic hydrocarbon precursor. To synthesize the mesostructured silica, a buffered (pH of 6.5) mixture of nonionic Pluronic P123 surfactant, sodium silicate, and acetic acid were used. The impregnated silica with Fe$(CO)_5$ (wt 5%) and pentane was placed in a quartz tube, treated with pentane vapor at 800 ${^{\circ}C}$ for two hours to synthesize the mesostructured carbon. The XRD patterns of the carbon replica in the low/wide angle regions, its TEM images, and nitrogen adsorption-desorption isotherm revealed that the long-range framework order of mesostructure with the pore size centered on 2.8 nm was maintained to some extent mainly due to some portions of mesophase carbon that work as a support to fix the hexagonal frameworks by anchoring on the pore surface with an improved graphitic character. The dc conductivity of the mesostructured carbon in pressed powder form at 6.0 MPa was 2.08 S/cm.

Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing (플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

Study on the Criteria of Raw Materials for RDF (폐기물 고형연료(RDF)의 원료 기준 연구)

  • Nho, Namsun;Shin, Daehyun;Bae, Dalhee;Kong, Seungdae;Cho, Seoyoung;Kim, Kwangho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.187.1-187.1
    • /
    • 2011
  • RDF(Refuse-Derived Fuel) is a fuel of pelletized form made of combustible solid wastes and can not only be used as alternative energy to fossil fuel but also solve troubles in thermal uses of incinerator. As the first stage for obtaining elementary data required to develop criteria of raw materials appropriate to RDF combustion facilities actively spread recently in Korea, preliminary experiments were conducted on CO, SOx, NOx and HCl production and reduction characteristics in combustion of RDF. RDF samples weighing 2~3 g per a sample were manufactured in a lab-scale way and combustion tests of RDF were carried out in electric furnace with quartz tube of 50 mm inside diameter.

  • PDF

Development of the Natural Gas Burner for Modified Chemical Deposition Processes (화학증착용 천연가스버너 개발)

  • You, Hyun-Seok;Lee, Joong-Seong;Han, Jeong-Ok;Choi, Dong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.75-81
    • /
    • 2001
  • MCVD(modified chemical vapor deposition) used in making optical-fiber currently utilizes the hydrogen-oxygen burner as a energy supply source. To improve the productivity and to reduce the manufacturing cost of optical-fiber, a natural gas-oxygen burner has been developed. The manufacturing processes of optical-fiber consist of vapor deposition, collapse and drawing processes. Among these processes, the vapor deposition and the collapse processes are important in terms of improving the productivity and saving the production cost. The vapor deposition and collapse processes are performed by combustion heat and flame force supplied by a burner. So the flame force of the burner used in these processes is required to have an optimal and consistent value in order to allow uniform heating and collapse of quartz tube. In this regard, the momentum ratio of natural gas and oxygen has been optimally determined by modification of a burner and the inlet flow pass also has been modified.

  • PDF

Fabrication of transition metal doped sapphire single crystal by high temperature and pressure acceleration method

  • Park, Eui-Seok;Jung, Choong-Ho;Kim, Moo-Kyung;Kim, Yoo-taek;Hong, Jung-Yoo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.77-79
    • /
    • 1998
  • Metallic chromium was diffused in the{0001},{1120} white sapphires which were grown by the Verneuil method to enhance the physical properties of the sapphires. Chromium metal vapour pressure and {{{{ { N}_{2 } }}}} pressure were kept by {{{{ { 1$\times$10}^{-4 } }}}} torr at 21 50 $^{\circ}C$ and 6 atm in the quartz-tube, respectively. The color do the Cr-doped sapphires was changed to light red. Chromium was diffused faster in the {1120} than 수 the {0001} plane. It was speculated that the planar density was one the factors determining diffusion coeffcient

  • PDF

Preparation of Multi-Wall Carbon Nanotubes by Floating Catalyst Method

  • Song, Hee-Suk;Kang, Eun-Jin;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • Aligned multi-wall carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. In this study, we investigated the influence of reaction parameters such as gas flow rate, ferrocene-xylene ratio and partial pressure, and reaction time on the yield and structure of vertically aligned carbon nanotubes produced by the floating catalyst method. The MWNTs produced had diameters in the range of 20~l00 nm, length around $100{\mu}m$ and bulk density about $0.51g/cm^3$ at a pressure of l0000 psi. It was possible to produce MWNTs with much faster growth rate of $12{\mu}m/min$ than that reported previously by the increase of ferrocene-xylene partial pressure.

  • PDF

2D-Axisymmetric Fluid Simulation of TEM Waveguide Linear Microwave Plasma Source

  • Han, Mun-Gi;Seo, Gwon-Sang;Yun, Yong-Su;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.222.1-222.1
    • /
    • 2014
  • Flexible device 및 OLED 디스플레이 제조를 위한 산화물 반도체 보호막 증착 및 encapsulation 공정을 위해 균일한 대면적 플라즈마를 만들기 위한 다양한 연구가 진행되고 있다. 초고주파 플라즈마는 고밀도, 고효율의 플라즈마를 저진공에서 쉽게 생성시킬 수 있고 다양한 전력결합방법을 통해 대면적 확장성이 우수한 장점이 있다. 본 연구에서는 TEM 웨이브가이드로 파워가 전달되는 선형 초고주파 플라즈마 소스에 대한 2차원축대칭 유체 시뮬레이션을 수행하였다. Ar 가스 압력과 초고주파 입력전력이 증가함에 따라 전자밀도가 증가하였고 도파관 방향으로 플라즈마의 길이가 증가함이 관측되었다. Quartz Tube 표면 가까이에서 전자밀도가 가장 높게 나타났다. 전자의 에너지 손실 채널중 가장 많은 부분을 차지하는 것은 여기종 생성에 따른 에너지 손실이었으며 탄성 충돌에 의한 에너지 손실이 두 번째로 큰 부분을 차지하였다.

  • PDF

A Study on the Fabrication of Amorphous Magnetostrictive Wire (아몰퍼스 자왜 와이어의 제작에 관한 연구)

  • 김대주;정왕일;조남희;신용진;강재덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.99-101
    • /
    • 1996
  • This paper is concerned with the fabrication of (Fe,Co)-Si-B amorphous magneto-strictive wire which attracts strong attention as a new sensor material. First, we put the ingot of (Fe$\sub$1-x/Co$\sub$x/)$\sub$77/Si$\sub$8/B$\sub$15/ composition into quartz tube. Then, under the condition of 400MHz and 8kW, we melt and mix the in-got in the high frequency induction furnance. After that, we obtain the magnetostrictive wire of 100∼150$\mu\textrm{m}$ in diameter by injection and rapid quenching within the high rotating water. Finally, we find that the wire is under the amorphous state.

  • PDF

Destruction of $SO_2$ and NO on the Carbon-bed by Microwave

  • Kim, Dong-Sik;Lee, Dong-Kyu
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • [ $SO_2$ ]and NO gases that come from the flue gases of most of all industrial combustion processes are harmful to everything include person and industrial facilities. For the simplification of the environmental clean-up processes, we studied the decomposition process by microwave. The microwave can destroy molecules into elementary atoms and offers energy to the atoms to react with carbons. Since the microwave is not absorbed into quartz tube and metallic chamber, the air pollution gases can be removed with much lower energy than in the case of conventional methods. We studied the decomposition of $SO_2$ and NO gases on the carbon beds by microwave. In the microwave field, the gases can be decomposed to form other compounds, such as elementary sulfur, nitrogen, carbon monoxide and carbon dioxide. It was found that CO gas is formed at higher temperature than is $CO_2$ gas, so it needs to control the bed temperature depend on products that we want to get.

  • PDF

Study on the Recovery of Polymeric Raw-materials from Waste Polystyrene by the Microwave Thermal Decomposition (마이크로웨이브 열분해를 이용한 폴리스티렌으로부터의 고분자 원료 물질의 회수에 관한 연구)

  • Kang, Tae-Won;Liu, Xiao-Yun;Hwang, Taek-Sung
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.190-195
    • /
    • 2003
  • A novel microwave-induced pyrolysis of polystyrene in motor oil was performed using a quartz tube reactor with silicon carbide as the microwave absorbent. Different pyrolysis conditions were investigated, such as time range from 30 minutes to 1 hour and power range from 180 to 250 watt. The distillate components were analyzed with GC-MS, and styrene, 1-methyl styrene, toluene, ethyl benzene were the four main products. Among these, styrene took over 70 percentages. Temperature of the complete pyrolysis using microwave was much lower than that of conventional thermal pyrolysis method.

  • PDF