• Title/Summary/Keyword: Quantum-resistant cryptography

검색결과 12건 처리시간 0.022초

A Quantum Resistant Lattice-based Blind Signature Scheme for Blockchain (블록체인을 위한 양자 내성의 격자 기반 블라인드 서명 기법)

  • Hakjun Lee
    • Smart Media Journal
    • /
    • 제12권2호
    • /
    • pp.76-82
    • /
    • 2023
  • In the 4th industrial revolution, the blockchain that distributes and manages data through a P2P network is used as a new decentralized networking paradigm in various fields such as manufacturing, culture, and public service. However, with the advent of quantum computers, quantum algorithms that are able to break existing cryptosystems such as hash function, symmetric key, and public key cryptography have been introduced. Currently, because most major blockchain systems use an elliptic curve cryptography to generate signatures for transactions, they are insecure against the quantum adversary. For this reason, the research on the quantum-resistant blockchain that utilizes lattice-based cryptography for transaction signatures is needed. Therefore, in this paper, we propose a blind signature scheme for the blockchain in which the contents of the signature can be verified later, as well as signing by hiding the contents to be signed using lattice-based cryptography with the property of quantum resistance. In addition, we prove the security of the proposed scheme using a random oracle model.

PCA-CIA Ensemble-based Feature Extraction for Bio-Key Generation

  • Kim, Aeyoung;Wang, Changda;Seo, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2919-2937
    • /
    • 2020
  • Post-Quantum Cryptography (PQC) is rapidly developing as a stable and reliable quantum-resistant form of cryptography, throughout the industry. Similarly to existing cryptography, however, it does not prevent a third-party from using the secret key when third party obtains the secret key by deception, unauthorized sharing, or unauthorized proxying. The most effective alternative to preventing such illegal use is the utilization of biometrics during the generation of the secret key. In this paper, we propose a biometric-based secret key generation scheme for multivariate quadratic signature schemes, such as Rainbow. This prevents the secret key from being used by an unauthorized third party through biometric recognition. It also generates a shorter secret key by applying Principal Component Analysis (PCA)-based Confidence Interval Analysis (CIA) as a feature extraction method. This scheme's optimized implementation performed well at high speeds.

Design of a Lightweight Security Protocol Using Post Quantum Cryptography (양자내성암호를 활용한 경량 보안 프로토콜 설계)

  • Jang, Kyung Bae;Sim, Min Joo;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • 제9권8호
    • /
    • pp.165-170
    • /
    • 2020
  • As the IoT (Internet of Things) era is activated, a lot of information including personal information is being transmitted through IoT devices. For information protection, it is important to perform cryptography communication, and it is required to use a lightweight security protocol due to performance limitations. Currently, most of the encryption methods used in the security protocol use RSA and ECC (Elliptic Curve Cryptography). However, if a high performance quantum computer is developed and the Shor algorithm is used, it can no longer be used because it can easily solve the stability problems based on the previous RSA and ECC. Therefore, in this paper, we designed a security protocol that is resistant to the computational power of quantum computers. The code-based crypto ROLLO, which is undergoing the NIST (National Institute of Standards and Technology) post quantum cryptography standardization, was used, and a hash and XOR computation with low computational consumption were used for mutual communication between IoT devices. Finally, a comparative analysis and safety analysis of the proposed protocol and the existing protocol were performed.

Quantum Cryptanalysis for DES Through Attack Cost Estimation of Grover's Algorithm (Grover 알고리즘 공격 비용 추정을 통한 DES에 대한 양자 암호 분석)

  • Jang, Kyung-bae;Kim, Hyun-Ji;Song, Gyeong-Ju;Sim, Min-Ju;Woo, Eum-Si;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제31권6호
    • /
    • pp.1149-1156
    • /
    • 2021
  • The Grover algorithm, which accelerates the brute force attack, is applicable to key recovery of symmetric key cryptography, and NIST uses the Grover attack cost for symmetric key cryptography to estimate the post-quantum security strength. In this paper, we estimate the attack cost of Grover's algorithm by implementing DES as a quantum circuit. NIST estimates the post-quantum security strength based on the attack cost of AES for symmetric key cryptography using 128, 192, and 256-bit keys. The estimated attack cost for DES can be analyzed to see how resistant DES is to attacks from quantum computers. Currently, since there is no post-quantum security index for symmetric key ciphers using 64-bit keys, the Grover attack cost for DES using 64-bit keys estimated in this paper can be used as a standard. ProjectQ, a quantum programming tool, was used to analyze the suitability and attack cost of the quantum circuit implementation of the proposed DES.

Analysis of Attacks and Security Level for Multivariate Quadratic Based Signature Scheme Rainbow (다변수 이차식 기반 서명 기법 Rainbow의 공격 기법 및 보안강도 분석)

  • Cho, Seong-Min;Kim, Jane;Seo, Seung-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제31권3호
    • /
    • pp.533-544
    • /
    • 2021
  • Using Shor algorithm, factoring and discrete logarithm problem can be solved effectively. The public key cryptography, such as RSA and ECC, based on factoring and discrete logarithm problem can be broken in polynomial time using Shor algorithm. NIST has been conducting a PQC(Post Quantum Cryptography) standardization process to select quantum-resistant public key cryptography. The multivariate quadratic based signature scheme, which is one of the PQC candidates, is suitable for IoT devices with limited resources due to its short signature and fast sign and verify process. We analyzes classic attacks and quantum attacks for Rainbow which is the only multivatiate quadratic based signature scheme to be finalized up to the round 3. Also we compute the attack complexity for the round 3 Rainbow parameters, and analyzes the security level of Rainbow, one of the PQC standardization candidates.

Analysis of NIST PQC Standardization Process and Round 4 Selected/Non-selected Algorithms (NIST PQC 표준화 과정 및 Round 4 선정/비선정 알고리즘 분석)

  • Choi Yu Ran;Choi Youn Sung;Lee Hak Jun
    • Convergence Security Journal
    • /
    • 제24권2호
    • /
    • pp.71-78
    • /
    • 2024
  • As the rapid development of quantum computing compromises current public key encryption methods, the National Institute of Standards and Technology (NIST) in the United States has initiated the Post-Quantum Cryptography(PQC) project to develop new encryption standards that can withstand quantum computer attacks. This project involves reviewing and evaluating various cryptographic algorithms proposed by researchers worldwide. The initially selected quantum-resistant cryptographic algorithms were developed based on lattices and hash functions. Currently, algorithms offering diverse technical approaches, such as BIKE, Classic McEliece, and HQC, are under review in the fourth round. CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON, and SPHINCS+ were selected for standardization in the third round. In 2024, a final decision will be made regarding the algorithms selected in the fourth round and those currently under evaluation. Strengthening the security of public key cryptosystems in preparation for the quantum computing era is a crucial step expected to have a significant impact on protecting future digital communication systems from threats. This paper analyzes the security and efficiency of quantum-resistant cryptographic algorithms, presenting trends in this field.

Secure NTRU-based Authentication and Key Distribution Protocol in Quantum Computing Environments (양자 컴퓨팅 환경에 안전한 NTRU 기반 인증 및 키 분배 프로토콜)

  • Jeong, SeongHa;Lee, KyungKeun;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • 제20권8호
    • /
    • pp.1321-1329
    • /
    • 2017
  • A quantum computer, based on quantum mechanics, is a paradigm of information processing that can show remarkable possibilities of exponentially improved information processing. This paradigm can be solved in a short time by calculating factoring problem and discrete logarithm problem that are typically used in public key cryptosystems such as RSA(Rivest-Shamir-Adleman) and ECC(Elliptic Curve Cryptography). In 2013, Lei et al. proposed a secure NTRU-based key distribution protocol for quantum computing. However, Lei et al. protocol was vulnerable to man-in-the-middle attacks. In this paper, we propose a NTRU(N-the truncated polynomial ring) key distribution protocol with mutual authentication only using NTRU convolution multiplication operation in order to maintain the security for quantum computing. The proposed protocol is resistant to quantum computing attacks. It is also provided a secure key distribution from various attacks such as man-in-the middle attack and replay attack.

Circulant UOV: a new UOV variant with shorter private key and faster signature generation

  • Peng, Zhiniang;Tang, Shaohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1376-1395
    • /
    • 2018
  • UOV is one of the most important signature schemes in Multivariate Public Key Cryptography (MPKC). It has a strong security guarantee and is considered to be quantum-resistant. However, it suffers from large key size and its signing procedure is relatively slow. In this paper, we propose a new secure UOV variant (Circulant UOV) with shorter private key and higher signing efficiency. We estimate that the private key size of Circulant UOV is smaller by about 45% than that of the regular UOV and its signing speed is more than 14 times faster than that of the regular UOV. We also give a practical implementation on modern x64 CPU, which shows that Circulant UOV is comparable to many other signature schemes.

Design of Efficient NTT-based Polynomial Multiplier (NTT 기반의 효율적인 다항식 곱셈기 설계)

  • Lee, SeungHo;Lee, DongChan;Kim, Yongmin
    • Journal of IKEEE
    • /
    • 제25권1호
    • /
    • pp.88-94
    • /
    • 2021
  • Public-key cryptographic algorithms such as RSA and ECC, which are currently in use, have used mathematical problems that would take a long time to calculate with current computers for encryption. But those algorithms can be easily broken by the Shor algorithm using the quantum computer. Lattice-based cryptography is proposed as new public-key encryption for the post-quantum era. This cryptographic algorithm is performed in the Polynomial Ring, and polynomial multiplication requires the most processing time. Therefore, a hardware model module is needed to calculate polynomial multiplication faster. Number Theoretic Transform, which called NTT, is the FFT performed in the finite field. The logic verification was performed using HDL, and the proposed design at the transistor level using Hspice was compared and analyzed to see how much improvement in delay time and power consumption was achieved. In the proposed design, the average delay was improved by 30% and the power consumption was reduced by more than 8%.

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제33권2호
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.