• 제목/요약/키워드: Quantum systems

검색결과 336건 처리시간 0.027초

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

QUANTUM CONTROL OF PARTICLES AT MATTER SURFACE OUTSIDE THE DOMAIN

  • Quan-Fang Wang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.11-36
    • /
    • 2023
  • In this presentation, the particles at the matter surface (metal, crystal, nano) will be considered as the control target outside the physical domain. As is well known that control problems of quantum particles at surface had been investigated in various aspects in last couple of years, but the realization of control would become rather difficult than theoretical results. Especially, whether surface control would be valid? what kind of particles at what kind of matter surfaces can be controlled? so many questions still left as the mystery in the current research literature and papers. It means that the direct control sometime does not easy. On the other hands, control outside the physical domain is quite a interest consideration in mathematics, physics and chemistry. The main plan is to take the quantum systems operator (such as Laplacian ∆) in the form of fractional operator (∆s , 0 < s < 1), then to consider the control outside of physical domain. Fortunately, there are many published articles in the field of applied mathematics can be referred for the achievement of control outside of domain. The external quantum control would be a fresh concept to do the physical control, first in the theoretic, second in the computational, final in the experimental issues.

Considerations on Standardization in Smart Hospitals

  • Sun-Ju Ahn;Sungin Lee;Chi Hye Park;Da Yeon Kwon;Sooyeon Jeon;Han Byeol Lee;Sang Rok Oh
    • 보건행정학회지
    • /
    • 제34권1호
    • /
    • pp.4-16
    • /
    • 2024
  • Smart hospitals involve the use of recent ICT (information and communications technology) technologies to improve healthcare access, efficiency, and effectiveness. Standardization in smart hospital technologies is crucial for interoperability, scalability, policy formulation, quality control, and maintenance. This study reviewed relevant international standards for smart hospitals and the organizations that develop them. Specific attention was paid to robotics in smart hospitals and the potential for standardization in this area. The study used online resources and existing standards to analyze technologies, standards, and practices in smart hospitals. Key technologies of smart hospitals were identified. Relevant standards from ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) were mapped to each core technology. Korea's leadership in smart hospital technology were highlighted. Approaches for standardizing smart hospitals were proposed. Finally, potential new international standard items for robotics in smart hospitals were identified and categorized by function: sampling, remote operation, delivery, disinfection, and movement tracking/contact tracing. Standardization in smart hospital technologies is crucial for ensuring interoperability, scalability, ethical use of artificial intelligence, and quality control. Implementing international standards in smart hospitals is expected to benefit individuals, healthcare institutions, nations, and industry by improving healthcare access, quality, and competitiveness.

DEVELOPMENT OF AN INTEGRATED DECISION SUPPORT SYSTEM TO AID COGNITIVE ACTIVITIES OF OPERATORS

  • Lee, Seung-Jun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.703-716
    • /
    • 2007
  • As digital and computer technologies have grown, human-machine interfaces (HMIs) have evolved. In safety-critical systems, especially in nuclear power plants (NPPs), HMIs are important for reducing operational costs, the number of necessary operators, and the probability of accident occurrence. Efforts have been made to improve main control room (MCR) interface design and to develop automated or decision support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid operator cognitive processes is proposed for advanced MCRs of future NPPs. This work suggests the design concept of a decision support system which accounts for an operator's cognitive processes. The proposed system supports not only a particular task, but also the entire operation process based on a human cognitive process model. In this paper, the operator's operation processes are analyzed according to a human cognitive process model and appropriate support systems that support each cognitive process activity are suggested.

ETRI AI 실행전략 2: AI 반도체 및 컴퓨팅시스템 기술경쟁력 강화 (ETRI AI Strategy #2: Strengthening Competencies in AI Semiconductor & Computing Technologies)

  • 최새솔;연승준
    • 전자통신동향분석
    • /
    • 제35권7호
    • /
    • pp.13-22
    • /
    • 2020
  • There is no denying that computing power has been a crucial driving force behind the development of artificial intelligence today. In addition, artificial intelligence (AI) semiconductors and computing systems are perceived to have promising industrial value in the market along with rapid technological advances. Therefore, success in this field is also meaningful to the nation's growth and competitiveness. In this context, ETRI's AI strategy proposes implementation directions and tasks with the aim of strengthening the technological competitiveness of AI semiconductors and computing systems. The paper contains a brief background of ETRI's AI Strategy #2, research and development trends, and key tasks in four major areas: 1) AI processors, 2) AI computing systems, 3) neuromorphic computing, and 4) quantum computing.

REVIEW OF VARIOUS DYNAMIC MODELING METHODS AND DEVELOPMENT OF AN INTUITIVE MODELING METHOD FOR DYNAMIC SYSTEMS

  • Shin, Seung-Ki;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.375-386
    • /
    • 2008
  • Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing reliability graph with general gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.