Linear-systems Transfer Theory for Analyzing Performance of Medical Imaging Systems

의학영상 시스템 성능 분석을 위한 선형시스템 전달이론

  • Published : 2008.01.01

Abstract

Keywords

References

  1. Hasegawa, B. H., 'The Physics of Medical X-ray Imaging, Madison, Wisconsin,' Medical Physics Publishing Company, 1991
  2. Cunningham, I. A., 'Applied Linear-Systems Theory,' Chapter 2, Handbook of Medical Imaging: Vol. 1. Physics and Psychophysics (Eds. J. Beutel, H.L. Kundel, and R. Van Metter), SPIE, 2000
  3. Dobbins III, J. T., 'Image Quality Metrics for Digital Systems,' Chapter 3, Handbook of Medical Imaging: Vol. 1. Physics and Psychophysics (Eds. J. Beutel, H.L. Kundel, and R. Van Metter), SPIE, 2000
  4. Rose, A., 'The Sensitivity Performance of The Human Eye on The Absolute Scale,' J. Opt. Soc. Am., Vol. 38, No. 2, pp. 196-208, 1948 https://doi.org/10.1364/JOSA.38.000196
  5. Moy, J. P., 'Signal-to-Noise Ratio and Spatial Resolution in X-ray Electronic Imagers: Is the MTF A Relevant Parameter?,' Med. Phys., Vol. 27, Issue 1, pp. 86-93, 2000 https://doi.org/10.1118/1.598859
  6. Metz, C. E., Wagner, R. F., Doi, K., Brown, D. G., Nishikawa, R. M. and Myers, K. J., 'Toward Consensus on Quantitative Assessment of Medical Imaging Systems,' Med. Phys., Vol. 22, Issue 7, pp. 1057-1061, 1995 https://doi.org/10.1118/1.597511
  7. Wagner, R. F., Weaver, K. E., Denny, E. W. and Bostrom, R. G., 'Toward A Unified View of Radiological Imaging Systems. Part I: Noiseless Images,' Med. Phys., Vol. 1, Issue 1, pp. 11-24, 1974 https://doi.org/10.1118/1.1637272
  8. Kim, H. K., 'Sensor Technology for Digital Radiography,' J. of the KSPE, Vol. 22, No. 8, pp. 7-16, 2005
  9. Street, R. A., Nelson, S., Antonuk, L. and Perez-Mendez, V., 'Amorphous Silicon Sensor Arrays for Radiation Imaging,' Proc. Mater. Res., Vol. 192, pp. 441-452, 1990
  10. Rowlands, J. A. and Kasap, S., 'Amorphous Semiconductor Usher in Digital X-ray Imaging,' Phys. Today, Vol. 50, No. 11, pp. 24-30, 1997
  11. Kim, H. K., Lee, S. C., Cho, M. H., Lee, S.Y. and Cho, G., 'Use of A Flat-Panel Detector for Microtomography: A Feasibility Study for Small-Animal Imaging,' IEEE Trans. Nucl. Sci., Vol. 52, No. 1, pp. 193-198, 2005 https://doi.org/10.1109/TNS.2004.843107
  12. Fujita, K., Mori, H., Kyuushima, R., Honda, M. and Yamamoto, K., 'High Resolution Large Formatted CMOS Flat-Panel Sensors for X-ray,' IEEE Nucl. Sci. Symp. and Med. Imag. Conf., pp. 2114-2118, 2003
  13. Bigas, M., Cabruja, E., Forest, J. and Salvi, J., 'Review of CMOS Image Sensors,' Microelectronics Journal, Vol. 37, Issue 5, pp. 433-451, 2006 https://doi.org/10.1016/j.mejo.2005.07.002
  14. Kim, H. K., 'Cone-Beam Microtomography and Its Application,' J. of the KSPE, Vol. 22, No. 3, pp. 7-14, 2005
  15. Jaffray, D. A. and Siewerdsen, J. H., 'Cone-Beam Computed Tomography with A Flat-Panel Imager: Initial Performance Characterization,' Med. Phys., Vol. 27, Issue 6, pp. 1311-1322, 2000 https://doi.org/10.1118/1.599009
  16. Ning, R., Chen, B., Yu, R., Conover, D., Tang, X., and Ning, Y., 'Flat Panel Detector-Based Cone-Beam Volume CT Angiography Imaging: System Evaluation,' IEEE Trans. Med. Imag., Vol. 19, No. 9, pp. 949-963, 2000 https://doi.org/10.1109/42.887842
  17. Lee, S. C., Kim, H. K., Chun, I. K., Cho, M. H., Lee, S. Y. and Cho, M. H., 'A Flat-Panel Detector Based Micro-CT System: Performance Evaluation for Small-Animal Imaging,' Phys. Med. Biol., Vol. 48, Issue 24, pp. 4173-4185, 2003 https://doi.org/10.1088/0031-9155/48/24/014
  18. Barrett, H. H. and Swindell, W., 'Radiological Imaging - The Theory of Image Formation, Detection, and Processing,' New York: Academic Press, 1981
  19. Barrett, H. H. and Meyers, K. J., 'Foundations of Image Science,' New York: Wiley, 2004
  20. Sattarivand, M. and Cunningham, I. A., 'Computational Engine for Development of Complex Cascaded Models of Signal and Noise in X-ray Imaging Systems,' IEEE Trans. Med. Imag., Vol. 24, No. 2, pp. 211-222, 2005 https://doi.org/10.1109/TMI.2004.839680
  21. Rabbani, M., Shaw, R. and Van Metter, R., 'Detective Quantum Efficiency of Imaging Systems with Amplifying and Scattering Mechanisms,' J. Opt. Soc. Am. A, Vol. 4, Issue 5, pp. 895-901, 1987 https://doi.org/10.1364/JOSAA.4.000895
  22. Rabbani, M. and Van Metter, R., 'Analysis of Signal and Noise Propagation for Several Imaging Mechanisms,' J. Opt. Soc. Am. A, Vol. 6, Issue 8, pp. 1156-1164, 1989 https://doi.org/10.1364/JOSAA.6.001156
  23. Cunningham, I. A., Westmore, M. S. and Fenster, A., 'A Spatial-Frequency-Dependent Quantum Accounting Diagram and Detective Quantum Efficiency Model of Signal and Noise Propagation in Cascaded Imaging Systems,' Med. Phys., Vol. 21, Issue 3, pp. 417-427, 1994 https://doi.org/10.1118/1.597401
  24. Swank, R. K., 'Absorption and Noise in X-ray Phosphors,' J. Appl. Phys., Vol. 44, Issue 9, pp. 4199-4203, 1973 https://doi.org/10.1063/1.1662918
  25. Barrett, H. H., Wagner, R. F. and Myers, K. J., 'Correlated Point Processes in Radiological Imaging,' Proc. SPIE, Vol. 3032, pp. 110-125, 1997
  26. Lee, S. C., Kim, H. K., Chun, I. K., Cho, M. H., Cho, M. H. and Lee, S. Y., 'Development and Characterization of A Flat-Panel Detector-Based Microtomography System,' Key Eng. Mater., Vols. 270-273, pp. 1245-251, 2004
  27. Yao, J. and Cunningham, I. A., 'Parallel Cascades: New Ways to Describe Noise Transfer in Medical Imaging Systems,' Med. Phys., Vol. 28, Issue 10, pp. 2020-2038, 2001 https://doi.org/10.1118/1.1405842
  28. Kim, H. K., 'Generalized Cascaded Model to Assess Noise Transfer in Scintillator-Based X-ray Imaging Detectors,' Appl. Phys. Lett., Vol. 89, No. 23, p. 233-504, 2006