• 제목/요약/키워드: Quantum phase transition

검색결과 23건 처리시간 0.024초

Quantum Spin Hall Effect And Topological Insulator

  • Lee, Ilyoung;Yu, Hwan Joo;Lee, Won Tae
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.516-520
    • /
    • 2014
  • Fractional quantum Hall Effect (FQSH) is one of most fundamental issues in condensed matter physics, and the Topological insulator becomes its prominent applications. This article reviews the general frameworks of these development and the physical properties. FQSH states and topological insulators are supposed to be topologically invariant under the minor change of geometrical shape or internal impurities. The phase transitions involved in this phenomena are known not to be explained in terms of symmetry breaking or Landau-Ginsburg theory. The new type of phase transitions related to topological invariants has acquired new name - topological phase transition. The intuitive concepts and the other area having same type of phase transitions are discussed.

  • PDF

Transition Phase Diagram for Escape Rate of Nanospin System in an Applied Magnetic Field

  • Yoon, Dal-Ho
    • Journal of Magnetics
    • /
    • 제7권4호
    • /
    • pp.156-159
    • /
    • 2002
  • We have investigated the escape rate of nano-magnetic particle with a magnetic field applied along the easy axis. The model studied here is described by the Hamiltonian H=$K_1\hat{S}{_z^2}$$K_2\hat{S}{_y^2}$$g{\mu}_bB$ $\hat{S}_x(K_1>K_2>0)$ and the escape rate was calculated with in the semiclassical approximation. We have obtained a diagram for orders of the phase transition depending on the anisotropy constant and the external field. For $K_2$/$K_1>$0.85 the present model reveals the existence of the first order transition within the quantum regime.

양자우물 - 양자선 상전이 현상의 광양자테 레이저 (Quantum well - quantum wire phase transiton of photonic quantum ring laser)

  • Kwon, O-Dae;Noik Pan;Kim, Junyeon
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.38-39
    • /
    • 2003
  • The GaAs semiconductor whispering gallery modes, produced in the peripheral Rayleigh band region of W/sub Rayleigh/ = (${\Phi}$/2)( 1-n/sub eff/n), exhibit novel properties of ultralow thresholds open to nano-ampere regime associated with photonic quantum ring (PQR) production (Fig 1 (a)). The PQR phenomena are associated with a photonic field-driven phase transition of quantum well(QW)-to-quantum wire (QWR) and hence the photonic (non-de Broglie) quantum corral effects, on the Rayleigh cavity confined carriers in dynamic steady state, occur as schematically shown in Fig 1. (omitted)

  • PDF

절대 0도 부근에서 양자터널링에 의한 헬리움(He)액체의 부압하에서의 기포형성 (Bubble Formation in Liquid Helium under Negative Pressure by Quantum Tunneling near Absolute Zero Temperature)

  • 곽호영;정정열;홍재호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.354-359
    • /
    • 2001
  • As the temperature of liquid under negative pressure approaches the absolute zero, the nucleation process due to thermal fluctuations hardly occurs. Instead of this mechanism, quantum fluctuations may lead the formation of nucleus for new phase in metastable state. In this study, the thermal as well as quantum nucleation bubble in liquid helium under negative pressure was investigated theoretically. The energy barrier against nucleation was estimated by molecular interaction due to the Londom dispersion force. It is shown that the phase transition from liquid to vapor in is possible due to the quantum tunneling below 0.2 K for Helium-4 and 0.1 K for Helium-3, at negative pressures close to the ideal tensile strength at which every liquid molecules become bubbles simultaneously.

  • PDF

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.

Multichannel Quantum-Defect Study of q reversals in Overlapping Resonances in Systems involving 1 Open and 2 Closed Channels

  • Cho, Byung-Hoon;Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.315-326
    • /
    • 2010
  • This study examined the overlapping resonances in the systems involving 1 open and 2 closed channels using the phase-shifted version of multichannel quantum-defect theory (MQDT). The results showed that 21 patterns for the q reversals in the autoionization spectra are possible depending on the relative arrangements of the two simple poles and roots of the quadratic equations. Complete cases could be generated easily using the q zero planes determined using only 3 asymmetric spectral line profile indices. The transition of the spectra of the coarse interloper Rydberg series from the lines into a structured continuum by being dispersed onto the entire Rydberg series was found. The overall behavior of the time delays was found to be governed by the dense Rydberg series, which is quite different from the one of the autoionization cross sections that is governed by an interloper, indicating that different dynamics prevail for them. This is in contrast to the two channel system where both quantities behave similarly. The dynamics obtained in the presence of overlapping resonances is as follows. The absorption process is instant and dominated by a transition to the interloper line. This process is followed by rapid leakage into the dense Rydberg series, which has a longer residence time before ionization than that of the interloper state. This is because the orbiting period is proportional to $\upsilon^3$ so that an excited electron has a shorter lifetime in the interloper state belonging to a lower member of the Rydberg series.

Strain-induced islands and nanostructures shape transition's chronology on InAs (100) surface

  • Gambaryan, Karen M.;Aroutiounian, Vladimir M.;Simonyan, Arpine K.;Ai, Yuanfei;Ashalley, Eric;Wang, Zhiming M.
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.211-217
    • /
    • 2014
  • The self-assembled strain-induced sub-micrometric islands and nanostructures are grown from In-As-Sb-P quaternary liquid phase on InAs (100) substrates in Stranski-Krastanow growth mode. Two samples are under consideration. The first sample consists of unencapsulated islands and lens-shape quantum dots (QDs) grown from expressly inhomogeneous liquid phase. The second sample is an n-InAs/p-InAsSbP heterostructure with QDs embedded in the p-n junction interface. The morphology, size and shape of the structures are investigated by high-resolution scanning electron (SEM) and transmission electron (TEM) microscopy. It is shown that islands, as they decrease in size, undergo shape transitions. Particularly, as the volume decreases, the following succession of shape transitions are detected: sub-micrometric truncated pyramid, {111} facetted pyramid, {111} and partially {105} facetted pyramid, completely unfacetted "pre-pyramid", hemisphere, lens-shaped QD, which then evolves again to nano-pyramid. A critical size of $5{\pm}2nm$ for the shape transformation of InAsSbP-based lens-shaped QD to nano-pyramid is experimentally measured and theoretically evaluated.

InGaN/GaN 다중 양자우물 구조에서의 결정상 분리 현상 연구 (Phenomenological Study on Crystal Phase Separation in InGaN/GaN Multiple Quantum Well Structures)

  • 이상준;김준오;김창수;노삼규;임기영
    • 한국진공학회지
    • /
    • 제16권1호
    • /
    • pp.27-32
    • /
    • 2007
  • 양자우물의 두께가 다른 4종류의 $In_xGa_{1-x}N(x=0.15)/GaN$ 다중 양자우물 구조의 PL 스펙트럼을 분석하여 InGaN에서의 결정상 분리 현상을 조사하였다. 우물폭이 1.5 nm에서 6.0 nm로 증가함에 따라, PL스펙트럼은 비대칭성이 점점 강해지는 이중 피크의 특성을 나타내었다. 곡선맞춤을 수행하여 분리한 2개의 피크를 분석하여, InGaN 우물에서의 부준위 천이에 해당하는 고에너지 피크의 세기는 줄어드는 반면, 상분리에 의하여 생성된 저에너지 피크의 강도는 점점 강해짐을 볼 수 있었다. 이것은 InGaN 우물에는 In 조성이 다소 다른 2개의 결정상이 존재하여, 우물폭 증가와 함께 InN 상분리가 강해지면서 In 조성이 큰(In-rich) InGaN 결정상이 상대적으로 증대됨을 보여 주는 결과로 해석된다. 우물 두께가 6.0 nm인 시료에서는 저에너지 영역(${\sim}2.0eV$)에서 또 하나의 피크이 관측되었는데, 이것은 GaN에서 잘 알려져 있는 결함에 기인한 황색준위(YB)와 그 근원이 같은 것으로, InN의 상분리가 임계값 이상으로 발달하여 생성된 결함과 관련된 준위인 것으로 해석된다.

InGaAs/InAlAs Quantum Cascade Lasers Grown by using Metal-organic Vapor-phase Epitaxy

  • Kim, Dong Hak;Jeong, Hae Yong;Choi, Young Su;Park, Deoksoo;Jeon, Young-Jin;Jun, Dong-Hwan
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.139-142
    • /
    • 2017
  • In this paper, InP-based InGaAs/InAlAs quantum cascade lasers(QCLs) providing nearly zero emission wavelength mismatch between the measured emission wavelength and the designed transition wavelength of QCLs is presented. The zero emission wavelength mismatch of QCLs influenced by both the accurate compositions and thicknesses of the low-pressure metal-organic vapor-phase epitaxy(MOVPE) grown InGaAs and InAlAs layers throughout the core and the abrupt composition transitions between InGaAs and InAlAs layers. The abrupt interfaces between InGaAs and InAlAs layers have been achieved throughout the core structure by means of controlling individually purged vent/run valves of a closed coupled showerhead reactor. In addition, maintaining substrate temperature constant during InGaAs/InAlAs core growth was a partial factor of uniformity improvement of QCLs. These approaches for reducing the possible discrepancies between the designed and MOVPE grown epitaxial structures could lead to improvement of QCL performance.