• Title/Summary/Keyword: Quantum dot conjugates

Search Result 5, Processing Time 0.02 seconds

A Novel Molecular Monitoring of Hyaluronic Acid Degradation using Quantum Dots

  • Kim, Ji-Seok;Hahn, Sei-Kwang;Kim, Sung-Jee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.251-251
    • /
    • 2006
  • A real time bio-imaging of HA degradation was successfully carried out using HA-quantum dot conjugates. HA-ADH with ADH content of ca. 70 mol% was synthesized and conjugated with quantum dots containing carboxyl terminal ligands which were activated by the addition of HOBt and EDC in DMSO. When the concentration of HA-ADH solution was higher than 4 wt%, HA-ADH hydrogels incorporating quantum dots could be synthesized in 30 minutes. These novel HA-quantum dot conjugates and the precursor solution of HA hydrogels incorporating quantum dots were injected to the nude mouse and investigated to elucidate the biological roles of HA in the body for various future tissue engineering applications.

  • PDF

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Application of Quantum-dot Nanocrystals for Cyanobacterial Toxin-Microcystin Detection (나노크리스탈 Quantum-dot을 적용한 남조류 독소 Microcystin 탐지 연구)

  • Lee, Jinwook;Yu, Hye-Weon;Kim, In S.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.705-711
    • /
    • 2007
  • Green quantum-dot nanocrystal (QD525) with anti-microcystin monoclonal antibody was applied for detection of microcystin, a monocyclic peptide hepatotoxin, extracted from the culture of Microcystis aeruginosa. The presence of microcystin in the cell lysate was verified by HPLC analysis with UV absorbance at 238 nm. Microcystis cell extract exhibited fluorescence emission spectra, which peak was around 460 nm because of their complex organic substances. When a spherical QD525 antibody conjugates (10~20 nm in diameter) were bound to the microcystins in the Microcystis cell lysate, the fluorescence intensity of the primary peak at 525 nm diminished while the secondary emission peak at 460 nm slightly increased intensities. It is due to energy transfer from the primary (major) to the secondary (minor) peak, resulting from physical deformation of QD525 and different environmental factors. On the other hand, other cell extracts did not show any fluorescence emission change. This study is very available for detecting and monitoring the microcystin because it is one step assay without washing step and portable spectrophotometer makes on-site measurement possible. For health risk assessment of the microcystin, the reliable and rapid system to detect and quantify microcystin is seriously required.

NTAㆍNi2+-Functionalized Quantum Dots for VAMP2 Labeling in Live Cells

  • Yu, Mi-Kyung;Lee, Su-Ho;Chang, Sung-Hoe;Jon, Sang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1474-1478
    • /
    • 2010
  • An efficient method for labeling individual proteins in live cells is required for investigations into biological mechanisms and cellular processes. Here we describe the preparation of small quantum dots (QDs) that target membrane surface proteins bearing a hexahistidine-tag ($His_6$-tag) via specific binding to an nitrilotriacetic acid complex of nickel(II) ($NTA{\cdot}Ni^{2+}$) on the QD surfaces. We showed that the $NTA{\cdot}Ni^{2+}$-QDs bound to His-tag functionalized beads as a cellular mimic with high specificity and that QDs successfully targeted $His_6$-tagged vesicle-associated membrane proteins (VMAP) on cell surfaces. This strategy provides an efficient approach to monitoring synaptic protein dynamics in spatially restricted and confined biological environments.

Visualization of Gene Transfer into Live Cells Using Fluorescent Semiconductor Nanocrystals

  • Kim Jung Kyung;Lim Sun Hee;Lee Yongku;Shin Young Shik;Chung Chanil;Chang Jun Keun;Yoo Jung Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.81-82
    • /
    • 2003
  • We have developed the method for the conjugation of biotinylated DNA to streptavidin-coated QDs. QD-DNA conjugates and a high-sensitive fluorescence imaging technique are adopted to visualize gene transport across the membrane of the live cell in real time. Endocytotic cellular uptake of oligonucleotide and electrically-mediated plasmid DNA transfer into the live cell are monitored by a quantitative microscopic imaging system. Long-term kinetic study enables us to reveal the unknown mechanisms and rate-limiting steps of extracellular and intracellular transport of biomolecules. We designed experimental protocols to conjugate the oligonucleotide or the plasmid DNA to commercially available streptavidin-coated QDs. Gel electrophoresis is used to verify the effect of incubation time and the molar ratio of QDs and DNA on the conjugation efficiency. It is possible to fractionate the QD-DNA conjugates according to the DNA concentration and obtain the purified conjugates by a gel extraction technique.

  • PDF