• Title/Summary/Keyword: Quantum chemical ab initio study

Search Result 20, Processing Time 0.02 seconds

Quantum Mechanical Study of van der Waals Complex. Ⅰ.The $H^2$ Dimer Using the DFT and the Multi-Coefficient G2/G3 Methods

  • Kim, Chang Sin;Kim, Sang Jun;Lee, Yong Sik;Kim, Yong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.510-514
    • /
    • 2000
  • Molecular hydrogen dimer, ($H_2)_2$ is a weakly bound van der Waals complex. The configuration of two hydrogen molecules and the potential well structure of the dimer have been the subjects of various studies among chemists and astrophysicists. In this study, we used DFT, MCG2, and MCG3 methods to determine the structure and energy of the molecular hydrogen dimer. We compared the results with previously reported ab initio method results. The ab initio results were also recalculated for comparison. All optimized geometries obtained from the MP2 and DFT methods are T-shaped. The H-H bond lengths for the dimer are almost the same as those of monomer. The center-to-center distance depeds on the levels of theory and the size of the basis sets. The bond lengths of the $H_2$ molecule from the MCG2 and MCG3 methods are shown to be in excellent agreement with the experimental value. The geometry of optimized dimer is T-shaped, and the well depths for the dimerization potential are very small, being 23 $cm-^1$ and 27 $cm-^1$ at the MCG2 and MCG3 levels, respectively. In general the MP2 level of theory predicts stronger van der Waals than the DFT, and agrees better with the MCG2 and MCG3 theories.

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Quantum Mechanical Studies for Structures and Energetic of Double Proton Transfer in Biologically Important Hydrogen-bonded Complexes

  • Park, Ki-Soo;Kim, Yang-Soo;Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3634-3640
    • /
    • 2011
  • We have performed quantum mechanical calculations to study the geometries and binding energies of biologically important, cyclic hydrogen-bonded complexes, such as formic acid + $H_2O$, formamidine + $H_2O$, formamide + $H_2O$, formic acid dimer, formamidine dimer, formamide dimer, formic acid + formamide, formic acid + formamidine, formamide + formamidine, and barrier heights for the double proton transfer in these complexes. Various ab initio, density functional theory, multilevel methods have been used. Geometries and energies depend very much on the level of theory. In particular, the transition state symmetry of the proton transfer in formamidine dimer varies greatly depending on the level of theory, so very high level of theory must be used to get any reasonable results.

Quantum-chemical Study of Effects of Alkoxy Substitution on the Conformations and Electronic Properties of Poly(p-phenylenevinylenes)

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • We have performed a quantum-chemical investigation on the conformations and electronic properties of a variety of methoxy-substituted poly(p-phenylenevinylenes) (PPVs) to elucidate the effects of alkoxy substitution. Geometrical parameters for the polymers were fully optimized through Austin Model I (AM I) semi-empirical Hartree-Fock (HF) band calculations. Electronic properties of the polymers were obtained by applying the AM I optimized structures to the modified extended Huckel method. To confirm validity of the AM I conformational results, we also carried out ab initio HF calculations with the 6-31G (d) basis set for a variety of methoxy-substituted divinylbenzenes. It is found that the potential energy surfaces of alkoxy-substituted PPVs are quite shallow around the planar conformations, suggesting that the prepared films possess a variety of conformations with different torsion angle in the solid state, depending on the synthetic conditions. When two alkoxy groups are concurrently substituted at the adjacent sites in the phenylene ring, these groups are subject to rotating around the C(sp2)-O bonds by 70-80° to avoid the strong steric repulsion between them. Consequently, the overlap between the π-type p orbital of oxygen and the π molecular orbitals of the polymer decreases. This leads to a wide gap and a high oxidation potential for tetramethoxy-substituted PPV, compared to those of dialkoxy-substituted PPV.

Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopic Study of Cyanide Ions at Gold Electrode

  • Son, Dong-Hee;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.357-360
    • /
    • 1994
  • The adsorption of cyanide ion on the gold electrode has been investigated by the subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS). The observations made by SNIFTIRS were consistent with those obtained by the polarization modulated Fourier transform infrared spectroscopy. According to the surface selection rule, cyanide ion appeared to adsorb on gold via either carbon or nitrogen lone pair electrons assuming a perpendicular orientation with respect to the metal surface. The possibility of presence of bridge-bound species seemed very infeasible. From the ab initio quantum mechanical calculation, adsorbate-to-metal bonding appeared to occur mainly via the $5{\sigma}$ donation from carbon to Au.

Quantum chemical investigations on bis(bora)calix[4]arene: a fluorescent fluoride sensor

  • Jin, Jae Hyeok;Lee, Yoon Sup
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.77-88
    • /
    • 2013
  • The computational study on the fluoride ion binding with bis(bora)calix[4]arene has been performed using density functional theory and ONIOM model. The computed structure and fluorescent behavior of bis(bora)calix[4]arene was corresponded to experiment value. The binding energy for fluoride anion is computed to be 28.05kJ/mol in the chloroform solution. We also predicted that this sensing mechanism is only valid for fluoride ion in halogens. By analyzing molecular orbitals, binding with fluoride ion reduces energy differences between HOMO and LUMO, which leads to fluorescent sensing.

  • PDF

Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods

  • Al-Hyali, Emad A.S.;Al-Azzawi, Nezar A.;Al-Abady, Faiz M.H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.733-740
    • /
    • 2011
  • Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C=N bond, the angle $C_6-C_1-C_7$, and length of O-H bond. Molecular properties are also used like energies of HOMO and LUMO, hardness(${\eta}$), chemical potential(${\mu}$), total energy(TE), dipole of molecule(DM), and electrophilicity index(W). The relation between pKa values and each of these parameters of the studied compounds is investigated. Depending on these relations, two sets of parameters were constructed for comparison between the PM3 and HF methods. The results obtained favor the Abinitio method for such applications although both models proved to have high predictive power and have sufficient reliability to describe the effect of substituents on pKa values of benzaldoxime compounds under consideration which is clear from the values of correlation coefficient $R^2$ obtained and the consistency between the experimental and the calculated values.

Interaction at the nanoscale of fundamental biological molecules with minerals

  • Valdre, Giovanni;Moro, Daniele;Ulian, Gianfranco
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.133-151
    • /
    • 2013
  • The availability of advanced nanotechnological methodologies (experimental and theoretical) has widened the investigation of biological/organic matter in interaction with substrates. Minerals are good candidates as substrates because they may present a wide variety of physico-chemical properties and surface nanostructures that can be used to actively condense and manipulate the biomolecules. Scanning Probe Microscopy (SPM) is one of the best suited techniques used to investigate at a single molecule level the surface interactions. In addition, the recent availability of high performance computing has increased the possibility to study quantum mechanically the interaction phenomena extending the number of atoms involved in the simulation. In the present paper, firstly we will briefly introduce new SPM technological developments and applications to investigate mineral surfaces and mineral-biomolecule interaction, then we will present results on the specific RNA-mineral interaction and recent basics and applicative achievements in the field of the interactions between other fundamental biological molecules and mineral surfaces from both an experimental and theoretical point of view.

Study of the Valence and Rydberg States of a Lithium Dimer by the Multi-reference Configuration-interaction Method

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1422-1432
    • /
    • 2014
  • Convergent all-electron multi-reference configuration-interaction (MRCI) calculations are performed for a lithium dimer with Kaufmann's Rydberg basis functions. A comparison of the results of these calculations with those of the effective core potential/core polarization potential (ECP/CPP) method and experimental data reveals the deficiency of the all-electron ab initio method. The deficiency is related to the mere 51.9% attainment of electron correlation for the ground state. The percent attainment of electron correlation for the first excited state is slightly better than that for the ground state, preventing us from obtaining better agreements with experimental data by means of increasing the size of basis sets. The Kaufmann basis functions are then used with the ECP/CPP method to obtain the accurate convergent potential energy curves for the $^1\prod_u$ states correlated to Li(2p) + Li(2p) and Li(2s) + Li(n = 2, 3, 4). Quantum defect curves (QDCs) calculated for both the $X^2\sum_g$ and 1 $^2\prod_u$ states of the $Li{_2}^+$ ion and the Lu-Fano plot reveal a strong series-series interaction between the two $2snp{\pi}$ and $2pnp{\pi}$ Rydberg series. The QDCs are then used to resolve assignment problems in the literature. The reassignments, performed by Jedrzejewski-Szemek et al., of the dissociation product of the D $^1\prod$ state from (2s+3d) to (2s+3p) and that of the 6 $^1\prod_u$ from (2s+4d) to (2s+4p) are found to be incorrect. It may be more natural to assign their $2snp{\pi}$ Rydberg series as a $2snd{\pi}$ series. The state, assigned as 5p $^1\prod_u$ by Ross et al. and 4d $^1\prod$ by Jedrzejewski-Szemek et al., is assigned as the 7 $^1\prod_u$ state, correlated to the Li(2s) + Li(4f) limit.

Analysis of Cis- Trans Photoisomerization Mechanism of Rhodopsin Based on the Tertiary Structure of Rhodopsin

  • Yamada, Atsushi;Yamato, Takahisa;Kakitani, Toshiaki;Yamamoto, Shigeyoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.51-54
    • /
    • 2002
  • We propose a novel mechanism (Twist Sharing Mechanism) for the cis-trans photoisomerization of rhodopsin, based on the molecular dynamics (MD) simulation study. New things devised in our simulations are (1) the adoption of Mt. Fuji potentials in the excited state for twisting of the three bonds C9=C10, C11=C12 and C13=14 which are modeled using the detailed ab initio quantum chemical calculations and (2) to use the rhodopsin structure which was resolved recently by the X-ray crystallographic study. As a result, we found the followings: Due to the intramolecular steric hindrance between 20-methyl and 10-H in the retinal chromophore, the C12-C13 and C10-C11 bonds are considerably twisted counterclockwise in rhodopsin, allowing only counterclockwise rotation of the C11 =C12 in the excited state. The movement of 19-methyl in rhodopsin is blocked by the surrounding three amino acids, Thr 118, Met 207 and Tyr 268, prohibiting the rotation of C9=C10. As a result only all-trans form of the chromophore is obtainable as a photoproduct. At the 90$^{\circ}$ twisting of C11=C12 in the course of photoisomerization, twisting energies of the other bonds amount to about 20 kcal/mol. If the transition state for the thermal isomerization is assumed to be similar to this structure, the activation energy for the thermal isomerization around C11=C12'in rhodopsin is elevated by about 20 kcal/mol and the thermal isomerization rate is decelerated by 10$\^$-14/ times than that of the retinal chromophore in solution, protecting photosignal from the thermal noise.

  • PDF