DOI QR코드

DOI QR Code

Quantum Mechanical Study of van der Waals Complex. Ⅰ.The $H^2$ Dimer Using the DFT and the Multi-Coefficient G2/G3 Methods


Abstract

Molecular hydrogen dimer, ($H_2)_2$ is a weakly bound van der Waals complex. The configuration of two hydrogen molecules and the potential well structure of the dimer have been the subjects of various studies among chemists and astrophysicists. In this study, we used DFT, MCG2, and MCG3 methods to determine the structure and energy of the molecular hydrogen dimer. We compared the results with previously reported ab initio method results. The ab initio results were also recalculated for comparison. All optimized geometries obtained from the MP2 and DFT methods are T-shaped. The H-H bond lengths for the dimer are almost the same as those of monomer. The center-to-center distance depeds on the levels of theory and the size of the basis sets. The bond lengths of the $H_2$ molecule from the MCG2 and MCG3 methods are shown to be in excellent agreement with the experimental value. The geometry of optimized dimer is T-shaped, and the well depths for the dimerization potential are very small, being 23 $cm-^1$ and 27 $cm-^1$ at the MCG2 and MCG3 levels, respectively. In general the MP2 level of theory predicts stronger van der Waals than the DFT, and agrees better with the MCG2 and MCG3 theories.

Keywords

References

  1. Phys. Rev. v.13 no.26 Watanabe, A;Welsh, H. L
  2. Physica v.26 Michels, A;De Graaff, W;Ten Seldam, C. A
  3. J. Chem. Phys. v.44 Gordon, R. G;Cashion, J. K
  4. Can. J. Phys. v.52 McKellar. A. R. W;Welsh, H. L
  5. J. Chem. Phys. v.95 no.5 McKellar, A. R. W;Schaefer, J
  6. Astrophys. J. v.326 McKellar, A. R. W
  7. Science v.204 Hanel, R;Conrarh, B;Flasar, M;Kunde, V;Lowman, P;Maguire, W;Pearl, J;Pirraglia, J;Samuelson, R;Gautier, D;Gierasch, P;Kumar, S
  8. J. Geophys. Res. v.99 Slanina, Z;Kim, S. J;Fox, K
  9. Chem. Rev. v.88 no.6 Hobza, P;Zahradnik, R
  10. Chem. Rev. v.94 Chalasinski, G;Szczesniak, M. M
  11. Theor. Chem. Acta. v.25 Tapia, O;Bessis, G
  12. J. Chem. Phys. v.76 Burton, P. G;Senff. U. E
  13. Theor. Chem. Acta v.73 Schneider, B;Hobza, P;Zahradnik, R
  14. Chem. Phys. Lett. v.134 no.5 Hobza, P;Schneider, B;Sauer, J;Carsky, P;Zahradnik, R
  15. J. Phys. B At. Mol. Phys. v.16 Danby, G;Flower, D. R
  16. At. Mol. Opt. Phys. v.22 Danby, G
  17. J. Chem. Phys. v.79 Burton, P. G;Senff, U. E
  18. J. Chem. Phys. v.95 Boothroyd, A. I;Dove, J. E;Keogh. W. J;Martin, P. G;Peterson, M. R
  19. J. Chem. Phys. v.101 no.5 Aguado, A;Suarez, C;Paniagua, M
  20. J. Chem. Phys. v.112 no.10 Diep, P;Johnson J. K
  21. J. Chem. Phys. v.57 Farrar, J. M;Lee, Y. T
  22. J. Chem. Phys. v.78 Buck, U;Huisken, F;Kolhase, A;Otten, D;Schaefer, J
  23. Phys. D v.13 Schaefer, J;Kohler, W. E. Z
  24. Chem. Phys. Lett. v.166 Frisch, M.J;Head-Gordon, M;Pople, J.A
  25. Chem. Phys. Lett. v.166 Frisch, M. J;Head-Gordon, M;Pop;e, J. A
  26. J. Chem. Phys. v.110 Fast, P. L;Corchado, J. C;Sanchez, M. L;Truhlar, D. G.
  27. Chem. Phys. Lett. v.306 Fast, P. L;Sanchez, M. L;Truhlar, D. G
  28. Ganussian 94 Revision D.4 Frisch, M. J;Truck, G. W;Schlegel, H. B;Gill, P. M.W;Johnson, B. G;Robb, M A.;Cheeseman, J. R;Keith, T;Petersson, G. A;Montgomery, J. A;Raghavachari, K;Al-Laham, M. A;Zakrzewski, V. G;Ortiz, J. V;Foresman, J. B;Cioslowski, J;Stefanov, B. B;Nanayakkara, A;Challachombe, M;Peng, C. Y;Ayala, P. Y;Chen, W. Wong, M. W;Andres, J. L;Replogle, E. S;Gomperts, R;Martin, R. L;Fox, D. J;Binkley, J. S;Defrees, D. J;Barker, J;Stewart, J. P;Head-Gordon, M;Gonzalez, C;Pople, J. A
  29. J. Chem. Phys. v.90 Dunning, Jr., T. H
  30. J. Chem. Phys. v.96 Kendall, R. A;Dunning, Jr., T. H;Harrison, R. J
  31. J. Chem. Phys. v.98 Woon, D. E;Dunning, Jr., T. H
  32. Exploring Chemistry with Electronic Structure Methods, A Guide to Using Gaussian, 2nd ed. Foresman, J. B; Frisch, A
  33. Gaussian 94 Users's Reference Frisch, M. J;Frisch, A;Foresman, J. B
  34. J. Chem. Phys. v.98 Becke, A. D
  35. J. Chem. Phys. v.96 Becke, A. D
  36. Phys. Rev. B v.7 Lee, C;Yang, W;Parr, R. G
  37. Phys. Rev. B v.34 Perdew, J. P
  38. Phys. Rev. B v.33 Perdew, J. P
  39. Multilevel 1.0 Rodger, J. M;Lynch, B. J;Fast, P. L;Chuang, Y.-Y;Truhlar, D. G
  40. Mol. Phys. v.19 Boys, S. F;Bernardi, F
  41. Molecular Spectra and Molecular Structure I Herzberg, G

Cited by

  1. Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2) vol.19, pp.12, 2013, https://doi.org/10.1007/s00894-013-2034-2
  2. Evaluation of molecular assembly, spectroscopic interpretation, intra-/inter molecular hydrogen bonding and chemical reactivity of two pyrrole precursors vol.1075, pp.None, 2000, https://doi.org/10.1016/j.molstruc.2014.07.012
  3. Minimal and complete set of descriptors for IR-absorption spectra of liquid H2-D2 mixtures vol.10, pp.5, 2000, https://doi.org/10.1063/1.5111000