• Title/Summary/Keyword: Quantum calculations

Search Result 158, Processing Time 0.029 seconds

Photodissocaition Dynamics of Propiolic Acid at 212 nm: The OH Production Channel

  • Shin, Myeong Suk;Lee, Ji Hye;Hwang, Hyonseok;Kwon, Chan Ho;Kim, Hong Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3618-3624
    • /
    • 2012
  • Photodissociation dynamics of propiolic acid ($HC{\equiv}C-COOH$) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ($^2{\Pi}$) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and total translational energy of products were determined. The electronic transition at 212 nm responsible for OH dissociation was assigned as the ${\pi}_{C{\equiv}C}{\rightarrow}{\pi}^*{_{C=O}}$ transition by time-dependent density functional theory calculations. Potential energy surfaces of both the ground and electronically excited states were obtained employing quantum chemical calculations. It was suggested that the dissociation of OH from propiolic acid excited at 212 nm should take place along the $S_1/T_1$ potential energy surfaces after internal conversion and/or intersystem crossing from the initially populated $S_2$ state based upon the potential energy calculations and model calculations for energy partitioning of the available energy among products.

Platform for Manipulating Polarization Modes Realized with Jones Vectors in MATHEMATICA

  • Choi, Yong-Dae;Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key distribution (QKD) to guarantee unconditional security in cryptography communication. We have provided a dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations in Methematica. The platform graphically simulates the mechanism of production and propagation of the polarized waves in a medium while satisfying Maxwell's equations.

Quantum Chemical Studies for the Structure-Property Relationships of the Fluoro-isothiocyanated Nematic Liquid Crystal Materials

  • Joo, Young-Dae;No, K.T.;Seong, See-Yearl;Kim, Y.B.;Ban, Byeong-Seob;Lee, K.J.;Souk, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.486-488
    • /
    • 2003
  • Some important properties of the liquid crystal molecules containing fluoro-isothiocyanated molecules have been studied using quantum chemical calculations and the results were correlated with respect to the structure of the molecules. Dielectric anisotropy, birefringence have been predicted for several unknown structures. The Maier-Meier, Vuks equation were used for the dielectric anisotropy and birefringence calculation. The results obtained by empirical approximation showed a good agreement with experiment ones.

  • PDF

A Computer Model for Polycrystalline Silicon $n^+$ -p Solar Cells (다결정 실리콘 $n^+$ -p 태양전지의 Computer Model)

  • 정호선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.6
    • /
    • pp.30-37
    • /
    • 1981
  • Numerical calculations have beee made of the effect of grain size on the three-dimensional carrier density, the quantum efficiency, and the AMI efficiency of 30$\mu$m polycrystalliue silicon p-n junction solar cells. Quantum efficiencies calculated for the polycrystalline silicon solar cells are compared to the monocrystalline cases. An efficiency of 12% can theoretically be obtained with grain size 100$\mu$m, and 6% for 5$\mu$m grains.

  • PDF

The Relation between Statistics of Input Photons and Photocounts

  • Ha, Yang;Kim, Heo-Noh;Shin, Jong-Tae;Park, Goo-Dong;Kim, Ill-Won;Kim, Tae-Soo;Kang, Hee-Dong
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.71-74
    • /
    • 2000
  • The relation between the statistics of photons in input light on a detector and the measured photocounts by the detector is discussed. The averages and variances of the photocounts are compared with the averages and variances of input photons on practical detectors having quantum efficiencies of $\mu$. This comparison was made for three kinds of inputs which include Fock state light, coherent light, and thermal light. The calculations were carried out based on the combined operator model for a detector having less-than-unit quantum efficiency.

Quantum Mechanical Studies for Structures and Energetic of Double Proton Transfer in Biologically Important Hydrogen-bonded Complexes

  • Park, Ki-Soo;Kim, Yang-Soo;Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3634-3640
    • /
    • 2011
  • We have performed quantum mechanical calculations to study the geometries and binding energies of biologically important, cyclic hydrogen-bonded complexes, such as formic acid + $H_2O$, formamidine + $H_2O$, formamide + $H_2O$, formic acid dimer, formamidine dimer, formamide dimer, formic acid + formamide, formic acid + formamidine, formamide + formamidine, and barrier heights for the double proton transfer in these complexes. Various ab initio, density functional theory, multilevel methods have been used. Geometries and energies depend very much on the level of theory. In particular, the transition state symmetry of the proton transfer in formamidine dimer varies greatly depending on the level of theory, so very high level of theory must be used to get any reasonable results.

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.

Numerical study of topological SQUIDs

  • Soohong, Choi;Yeongmin, Jang;Sara, Arif;Yong-Joo, Doh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.11-15
    • /
    • 2022
  • We conducted numerical calculations to obtain the critical current as a function of the magnetic flux through the topologically trivial and non-trivial superconducting quantum interference devices (SQUIDs), with varying the capacitive and inductive couplings of Josephson junctions (JJs). Our calculation results indicate that a nontrivial SQUID is almost indistinguishable from trivial SQUID, considering the effective capacitance coupling. When the SQUID contains 2π- and 4π-periodic supercurrents, the periodicity of the current-flux relation can be distinguished from the purely trivial or nontrivial SQUID cases, and its difference is sensitive to the relative ratio between the topologically trivial and nontrivial supercurrents. We believe that our calculation results would provide a practical guide to quantitatively measure the portion of the topologically nontrivial supercurrents in experiments.

Investigation of Pyridinium Ionic Liquids in Corrosion Inhibition of Carbon Steel in Saline Environments (염수 환경에서 탄소강의 피리디늄 이온 액체에 대한 부식 억제 평가 연구)

  • Hassane Lgaz;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.121-122
    • /
    • 2023
  • This study investigates the anti-corrosion properties of two eco-friendly pyridinium ionic liquids; 4DMN and 4DMP, in a 3.5% NaCl solution. Utilizing weight loss tests, EIS, PDP, quantum chemical calculations, and molecular dynamics simulations, the study demonstrates concentration-dependent inhibition efficiencies of 94% and 92% for 4DMN and 4DMP, respectively. The compounds modulate both anodic and cathodic reactions without altering the corrosion mechanism. EIS data suggest that a protective layer forms, supported by FE-SEM and AFM surface analyses, which reveal improved morphology and reduced roughness. Computational validations corroborate these empirical findings, highlighting the feasibility of these ionic liquids for effective, sustainable corrosion mitigation.

  • PDF

Real variance estimation in iDTMC-based depletion analysis

  • Inyup Kim;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4228-4237
    • /
    • 2023
  • The Improved Deterministic Truncation of Monte Carlo (iDTMC) is a powerful acceleration and variance reduction scheme in the Monte Carlo analysis. The concept of the iDTMC method and correlated sampling-based real variance estimation are briefly introduced. Moreover, the application of the iterative scheme to the correlated sampling is discussed. The iDTMC method is utilized in a 3-dimensional small modular reactor (SMR) model problem. The real variances of burnup-dependent criticality and power distribution are evaluated and compared with the ones obtained from 30 independent iDTMC calculations. The impact of the inactive cycles on the correlated sampling is also evaluated to investigate the consistency of the correlated sample scheme. In addition, numerical performances and sensitivity analysis on the real variance estimation are performed in view of the figure of merit of the iDTMC method. The numerical results show that the correlated sampling accurately estimates the real variances with high computational efficiencies.