DOI QR코드

DOI QR Code

Platform for Manipulating Polarization Modes Realized with Jones Vectors in MATHEMATICA

  • Choi, Yong-Dae (Department of Microbial and Nanomaterials, Mokwon University) ;
  • Kim, Bogyeong (Department of Astronomy and Space Science, Chungnam National University) ;
  • Yun, Hee-Joong (Korean Institute of Science and Technology Information)
  • Received : 2015.03.01
  • Accepted : 2015.04.08
  • Published : 2015.06.15

Abstract

The fundamental conception in physics of the propagation of the electromagnetic wave polarization in matter is newly understood as the cardinal keyword in free-space quantum communication technology and cosmology in astrophysics. Interactive visualization of the propagation mechanism of polarized electromagnetism in a medium with its helicity has accordingly received attention from scientists exploiting the protocol of quantum key distribution (QKD) to guarantee unconditional security in cryptography communication. We have provided a dynamic polarization platform for presenting the polarization modes of a transverse electromagnetic wave, converting the state of polarization through the arrangement of optical elements, using Jones vectors calculations in Methematica. The platform graphically simulates the mechanism of production and propagation of the polarized waves in a medium while satisfying Maxwell's equations.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Aad G, Abbott B, Abdallah J, Khalek SA, Abdelalim AA et al, Search for the Standard Model Higgs Boson in the Diphoton Decay Channel with 4.9 $fd^{-1}$ of pp Collision Data at $\sqrt{s}$=7TeV with ATLAS, Phys. Rev. Lett. 108, 111803 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.111803
  2. Ade PAR, Aikin RW, Bento SJ, Bischoff CA, Bock JJ et al., Detection of B-Model Polarization at Degree Angular Scales by BICEP, Phys. Rev. Lett. 112, 241101 (2014). http://dx.doi.org/10.1103/PhysRevLett.112.241101
  3. Born M, Wolf E, Principle of Optics 7th ed. (Cambridge University Press, Cambridge, 1999), 795.
  4. Boyle LA, Steinhardt PJ, Turok N, Inflationary predictions for scalar and tensor fluctuations reconsidered, Phys.Rev. Lett. 96, 111301 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.111301
  5. Harrison DM, Optics Applets [Internet], cited 2015 Feb 15, Available from: http://www.cabrillo.edu/-jmccullough/Applets/Flash/Optics/CircPol.swf.
  6. Calvin W, NASA Technology Views Birth of the Universe [Internet], cited 2014 Mar 17, Available from: http://jpl.nasa.gov/news/news.php?release=2014-082.
  7. CfA, First Direct evidence of cosmic inflation [Internet], cited 2014 Mar 17, Available from: http://cfa.harvard.edu.
  8. Elser D, Bartley T, Heim B, Wittmann Ch, Sych D et al., Feasibility of free space quantum key distribution with coherent polarization states, New J. Phys. 11, 045014 (2009). http://dx.doi.org/10.1088/1367-2630/11/4/045014
  9. Fowles GR, Introduction to Modern Optics (Holt, Reinhart and Winston, 1975).
  10. Georgi H, 1982, Lie Algebra in Particle Physics (The Benjamin INC, 1982), 162.
  11. Goldhaver M, Grodzins L, Sunyar AW, Helicity of Neutrinos, Phys. Rev. Lett. 109, 1015 (1958). http://dx.doi.org/10.1103/PhysRev.109.1015
  12. Jackson JD, Classical Electrodynamics, (John Wiley & Sons, 1975), 274.
  13. Jones RC, A New Calculus for the Treatment of Optical Systems, J. Opt. Soc. Am. 31, 488-493 (1941). http://dx.doi.org/ 10.1364/JOSA.31.000488
  14. Kim B, Yun HJ, Pedagogical Mathematica Platform Visualizing the Coriolis Effects in 3-Cell Atmospheric Circulation Model, J. Astron. Space Sci. 31, 91-99 (2014). http://dx.doi.org/ 10.5140/JASS.2014.31.1.91
  15. Leitch EM, Kovac JM, Pryke C, Carlstrom JE, Halverson NW et al., Measurement of Polarization with the Degree Angular Scale Interferometer, Nature 420, 673-771 (2002). http://dx.doi.org/10.1038/nature01271
  16. Masayoshi T, Cutting-edge terahertz technology, Nat. Photonics 1, 97 (2007). http://dx.doi.org/10.1038/nphoton.2007.3
  17. Mathematica, Wolfram Mathematica [Internet], cited 2015 Feb 15, Available from: http://www.wolfram.com/mathematica
  18. Mooleskamp FE, Stokes KL, Polarization of an Optical Wave through Polarizers and Wave Plates [Internet], cited 201 Feb 15, Available from: http://demonstrations.wolfram.com/PolarizationOfAnOptiionsaturlWaveThroughPolarizersAndWavePlates
  19. Pedrotti FL, Pedrotti LS, Introduction to Optics (Prentice-Hall, 1987).
  20. Reitz R, Milford FJ, Christy W, Foundation of Electromagnetic Theory, 4th ed. (Addison Wesley, Reading, Massachusetts, 1993).
  21. Rubenhok A, Slater JA, Chan P, Lucio-Martinez I, Tittel W, Real-World Two-Photon Interference and Proof-of-Principle Quantum Key Distribution Immune to Detector Attacks, Phys. Rev. Lett. 111, 130501 (2013). http://dx.doi.org/10.1103/PhysRevLett.111.130501
  22. Tamm P, A Physicist's Guide to Mathematica (Academic Press, San Diego 1997), 291-293.
  23. Tang X, Ghassemlooy Z, Rajbhandari S, Popoola WO, Lee CG et al., Free-space optical communication employing polarization shift keying coherent modulation in atmospheric turbulence channel, in 7th International Symposium, Newcastle, England, 21-23 July 2010.
  24. Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Lorenzo Marrucci L et al., Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons, Phys. Rev. Lett. 113, 060503 (2014). http://dx.doi.org/10.1103/PhysRevLett.113.060503
  25. Wolfram, Wolfram CDF Player for Interactive Computable Document Format [Internet], cited 2015 Feb 15, Available from: http://www.wolfram.com/cdf-player
  26. Yao XS, Yan LS, Zhang B, Willer AE, Jiang J, All-optic scheme for automatic polarization division demultiplexing, Opt. Express 15, 7407-7414 (2007). http://dx.doi.org/10.1364/OE.15.007407
  27. Yun HJ, Choi YD, Dynamic Polarization Mathematica Platform Realized with Poynting Vectors, New Phys.: Sae Mulli 63, 1118-1127 (2013). http://dx.doi.org/10.3938/NPSM.63.1118
  28. Yun HJ, jdpmp programs [Internet], cited 2015 Feb 15, Available from: http://home.mokwon.ac.kr/-heejy/program.htm