• Title/Summary/Keyword: Quantum Time

Search Result 488, Processing Time 0.034 seconds

Suppression of tobamovirus movement toward upper leaves in the tomato plant over-expressing a maize calreticulin (옥수수 calreticulin 과발현 토마토에서 tobamovirus의 상엽 이동 억제)

  • Han, Jeung-Sul
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.567-573
    • /
    • 2010
  • To ascertain the effect of over-expressed maize calreticulin in tomato plant on tobamovirus movement in addition to validating potentiality of the gene (ZmCRT) as a means for the virus-resistance resource, four ZmCRT-expressing homozygous lines were generated from the T0 plants as using an Agrobacterium-mediated transformation, nucleic acid analyses, and a conventional breeding method. Of them, a line was subjected to the bioassay for tolerances to tobacco mosaic virus-U1 (TMV-U1) and tomato mosaic virus (ToMV) followed by RT-PCR and a chlorophyll fluorescence quenching analyses. Both transgenic plants transcribing ZmCRT and wild-type plants showed no symptom by 20 days after viruses inoculation, however the photosystem II quantum yield parameter measured from the upper leaves of ToMV-inoculated plants revealed that ZmCRT transgenic plants have higher photosynthetic ability than wild-type ones at that time, which indirectly implies that over-expressed ZmCRT product acts as a barrier to the cell-to-cell and/or systemic movement of ToMV. Moreover, ZmCRT transgenic plants showed remarkably longer shoot length than wild-type ones in 40 days after TMV-U1 or ToMV inoculation each, which might be resulted from higher photosynthetic ability during the phase not yet showing any external symptoms. Collectively, over-expressed ZmCRT protein in tomato plants is able to interrupt the systemic movement of infected TMV-U1 and ToMV even though not perfect.

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

Automatic Visualization for Heterogeneous Hologram-Like Systems (이기종 유사홀로그램 시스템 간 콘텐츠 자동 가시화 기법)

  • Kim, Ju-Hwan;Jo, DongSik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1445-1450
    • /
    • 2020
  • Recently, a hologram-like system to provide a realistic experience has been serviced in performances, exhibitions, education. The constructing method for the hologram-like system can be configured in various forms such as a pyramid-typed, a semi-transparent large screen form. However, in various types of hologram-like systems, it is difficult to provide adjustment by changing and revising the content according to the configured hardware characteristics. In this paper, we propose a novel technique that can automatically visualize virtual contents running on heterogeneous hologram-like systems. To change the content to a given hardware configuration, we receive pre-built simple text-based configuration data, and correcting process was performed. According to the results of this paper, we found automatically and easily corrected visualization with the given configuration of the hologram-like system. Also, the problem of reducing the time by manual control in various types of heterogeneous hologram systems was solved.

An Interdisciplinary Study of A Leaders' Voice Characteristics: Acoustical Analysis and Members' Cognition

  • Hahm, SangWoo;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4849-4865
    • /
    • 2020
  • The traditional roles of leaders are to influence members and motivate them to achieve shared goals in organizations. However, leaders such as top managers and chief executive officers, in practice, do not always directly meet or influence other company members. In fact, they tend to have the greatest impact on their members through formal speeches, company procedures, and the like. As such, official speech is directly related to the motivation of company employees. In an official speech, not only the contents of the speech, but also the voice characteristics of the speaker have an important influence on listeners, as the different vocal characteristics of a person can have different effects on the listener. Therefore, according to the voice characteristics of a leader, the cognition of the members may change, and, the degree to which the members are influenced and motivated will be different. This study identifies how members may perceive a speech differently according to the different voice characteristics of leaders in formal speeches. Further, different perceptions about voices will influence members' cognition of the leader, for example, in how trustworthy they appear. The study analyzed recorded speeches of leaders, and extracted features of their speaking style through digital speech signal analysis. Then, parameters were extracted and analyzed by the time domain, frequency domain, and spectrogram domain methods. We also analyzed the parameters for use in Natural Language Processing. We investigated which leader's voice characteristics had more influence on members or were more effective on them. A person's voice characteristics can be changed. Therefore, leaders who seek to influence members in formal speeches should have effective voice characteristics to motivate followers.

Superconductivity recovery of vacuum annealed HTS GdBCO CC

  • You, Jong Su;Yang, Jeong Hun;Song, Kyu Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • The superconducting properties of high temperature superconducting (HTS) GdBCO coated conductor (CC) tape (Ag/GdBCO/Buffer-layers/Stainless Steel) were investigated, specifically a series of samples prepared by vacuum heat treatment (200℃ to 600℃), using a Quantum Design PPMS-14. The critical current density Jc value was obtained by applying the modified Bean model to the irreversible magnetization ∆Mirr(H) data which was estimated from the magnetization M(H) loop. The reduction rates of lnJc and Tc values according to the increase of the vacuum annealing temperature Tan were d(lnJc)/dTan = - 0.016 A/(cm2∙℃) and dTc/dTan = - 0.24, respectively. We examined the effect of recovery temperature Tre (475℃ to 700℃) and recovery duration time t (0.5 h to 24 h) on the restoration of previously completely lost superconductivity in samples that subsequently received heat treatment in an O2 gas flow space. All samples were fully restored to superconductivity by heat treatment in an O2 gas flow space. The recovery temperatures Tre (475℃ to 700℃) and recovery duration times t (0.5 h to 24 h) were both independent of the superconductivity recovery characteristics.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Analysis of Energy Preference in the 4th Industrial Revolution Based on Decision Making Methodology (의사결정 방법론 기반 4차 산업혁명 시대 에너지 선호도 분석)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.328-329
    • /
    • 2021
  • Newly, the fourth industrial revolution is a way of describing the blurring of boundaries between the physical, digital, and biological worlds. It's a fusion of advances in AI (artificial intelligence), robotics, the IoT (Internet of Things), 3d printing, genetic engineering, quantum computing, and other technologies. At the world economic forum in Davos, switzerland, in january 2016, chairman professor klaus schwab proposed the fourth industrial revolution for the first time. In order to apply the AHP (analytic hierarchy process) analysis method, the first stage factors were designed as Natural, Water, Earth and Atom energy. In addition, the second stage factors were organized into 9 detailed energies presented in the conceptual model. Thus, we present the theoretical and practical implications of these results.

  • PDF

Technology Trend Analysis of the 4th Industrial Revolution Using AHP (AHP 기법을 이용한 4차 산업혁명 기술 트렌드 분석)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.330-331
    • /
    • 2021
  • Newly, the fourth industrial revolution is a way of describing the blurring of boundaries between the physical, digital, and biological worlds. It's a fusion of advances in AI (artificial intelligence), robotics, the IoT (internet of things), 3d printing, genetic engineering, quantum computing, and other technologies. At the world economic forum in Davos, switzerland, in january 2016, chairman professor (klaus schwab) proposed the fourth industrial revolution for the first time. In order to apply the AHP (analytic hierarchy process) analysis method, the first stage factors were designed as Digital Technology, Physics Technology and Biological Technology. In addition, the second stage factors were organized into 8 detailed services presented in the conceptual model. Thus, we present the theoretical and practical implications of these results.

  • PDF

A Study on Efficient Signing Methods and Optimal Parameters Proposal for SeaSign Implementation (SeaSign에 대한 효율적인 서명 방법 및 최적 파라미터 제안 연구)

  • Suhri Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • This paper proposes optimization techniques for SeaSign, an isogeny-based digital signature algorithm. SeaSign combines class group actions of CSIDH with the Fiat-Shamir with abort. While CSIDH-based algorithms have regained attention due to polynomial time attacks for SIDH-based algorithms, SeaSiogn has not undergone significat optimization because of its inefficiency. In this paper, an efficient signing method for SeaSign is proposed. The proposed signing method is simple yet powerful, achived by repositioning the rejection sampling within the algorithm. Additionally, this paper presnts parameters that can provide optimal performance for the proposed algorithm. As a result, by using the original parameters of SeaSign, the proposed method is three times faster than the original SeaSign. Additonally, combining the newly suggested parameters with the signing method proposed in this paper yields a performance that is 290 times faster than the original SeaSign and 7.47 times faster than the method proposed by Decru et al.

Microwave Radiation-Assisted Chitin Deacetylation: Optimization by Response Surface Methodology (RSM)

  • Iqmal Tahir;Karna Wijaya;Mudasir;Dita Krismayanti;Aldino Javier Saviola;Roswanira Abdul Wahab;Amalia Kurnia Amin;Wahyu Dita Saputri;Remi Ayu Pratika
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.