• 제목/요약/키워드: Quantum Time

검색결과 495건 처리시간 0.023초

Luminescence and Crystal-Field Analysis of Europium and Terbium Complexes with Oxydiacetate and 1,10-Phenanthroline

  • Kang, Jun-Gill;Kim, Tack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권7호
    • /
    • pp.1057-1064
    • /
    • 2005
  • Photoluminescence (PL) spectra of Eu(III) and Tb(III) complexes with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands and with homoleptic ODA reveal characteristic line-splitting at 10 K, depending on the site-symmetry of the lanthanide ion in the complex. The energy-level schemes of the $^7F_J$ states and the emitting levels for Eu(III) and Tb(III) ions have been proposed by simulating the line splitting in the framework of crystal-field Hamiltonian. The sets of refined crystal-field parameters for the experimentally determined sitesymmetry satisfactorily reproduce the experimental energy-level schemes. In addition, the PL quantum yield and the decay time were determined at room temperature. The PL quantum yields of [$Eu(ODA){\cdot}(phen){\cdot}4H_2O]^+$ and [Tb$(ODA){\cdot}(phen){\cdot}4H_2O]^+$ in the crystalline state (Q = 17.7 and Q = 56.6%, respectively) are much greater than those of [Eu($ODA)_3]^{3-}and\;[Tb(ODA)_3]^{3-}$(Q = 1.1 and Q = 1.3, respectively), due to the energy transfer from phen to the lanthanide ion. In the aqueous state, the relaxation of the phen moiety due to the solvent results in the reduction of the quantum yield and the shortening of the lifetime.

Study on the Output Current for Electrochemical Low-energy Neutrino Detector with Regards to Oxygen Concentration

  • Suda, Shoya;Ishibashi, Kenji;Riyana, Eka Sapta;Aida, Yani Nur;Nakamura, Shohei;Imahayashi, Yoichi
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.373-377
    • /
    • 2016
  • Background: Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. Materials and Methods: To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. Results and Discussion: It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. Conclusion: We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.

QCA를 이용한 효율적인 BCD-3초과 코드 변환기 설계 (Efficient Design of BCD-EXCESS 3 Code Converter Using Quantum-Dot Cellular Automata)

  • 유영원;전준철
    • 한국항행학회논문지
    • /
    • 제17권6호
    • /
    • pp.700-704
    • /
    • 2013
  • 양자 셀룰라 오토마타(QCA)는 CMOS의 기술을 상속받을 차세대 나노 전자 소자 중 하나이다. QCA는 원자규모 및 초저전력화로 이목이 집중되고 있으며 다양한 QCA 회로들이 제안되었다. 십진 출력을 요하는 전자회로와 마이크로프로세서에서 주로 사용되는 이진화 십진법(BCD)은 연산을 위한 변환은 편하지만 데이터 낭비가 심하다. 본 논문에서는 QCA 회로에서 감산 및 반올림에 효과적으로 이용될 수 있는 BCD-3초과 코드를 제안한다. 제안된 구조는 잡음을 최소화하고 공간 및 시간 복잡도를 고려하여 효율적으로 설계되었으며 시뮬레이션을 통해 검증하였다.

Application of a combined safety approach for the evaluation of safety margin during a Loss of Condenser Vacuum event

  • Shin, Dong-Hun;Jeong, Hae-Yong;Park, Moon-Ghu;Sohn, Jung-Uk
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1698-1711
    • /
    • 2022
  • A combined safety approach, which uses a best-estimate computer code and adopts conservative assumptions for safety systems availability, is developed and applied to the safety margin evaluation for the Loss of Condenser Vacuum (LOCV) of the 1000 MWe Korean Nuclear Power Plant. The Multi-dimensional Analysis of Reactor Safety-KINS standard (MARS-KS) code is selected as a best-estimate code and the PAPIRUS program is used to obtain different initial operational conditions through random sampling of control variables. During an LOCV event, fuel integrity is not threatened by the increase in Departure from Nuclear Boiling Ratio (DNBR). However, the high pressure in the primary coolant system and the secondary system might affect the system integrity. Thus, the peak pressure becomes a major safety concern. Transient analyses are performed for 124 cases of different initial conditions and the most conservative case, which results in the highest system pressure is selected. It is found the suggested methodology gives similar peak pressures when compared to those predicted from existing methodologies. The proposed approach is expected to minimize the time and efforts required to identify the conservative plant conditions in the existing conservative safety methodologies.

내부 도핑 법에 의한 Cu 도핑 Cu:ZnSe 양자점의 수계 합성 및 발광 특성 (Aqueous Synthesis and Luminescent Characteristics of Cu:ZnSe Quantum Dots by Internal Doping Method)

  • 백금지;홍현선
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.370-375
    • /
    • 2022
  • Cu-doped ZnSe quantum dots were successfully synthesized in an aqueous solution using an internal doping method. The effects of ligand type, CuSe synthesis temperature, and heating time on Cu-doped ZnSe synthesis were systematically investigated. Of MPA, GSH, TGA, and NAC used as ligands, MPA was the optimal ligand as determined by PL spectrum analysis. In addition, the emission wavelength was found to depend on the synthesis temperature of the internal doping core of CuSe. As the temperature increased, the doping of Cu2+ was enhanced, and the emission wavelength band was redshifted; accordingly, the emission peaks moved from blue to green (up to 550 nm). Thus, the synthesis of Cu:ZnSe using internal doping in aqueous solutions is a potential method for ecomanufacturing of color-tuned ZnSe quantum dots for display applications.

드론 LiDAR에 기반한 매핑 시스템의 고속도로 건설 현장 적용 사례 (Example of Application of Drone Mapping System based on LiDAR to Highway Construction Site)

  • 신승민;권오성;반창우
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1325-1332
    • /
    • 2023
  • Recently, much research is being conducted based on point cloud data for the growth of innovations such as construction automation in the transportation field and virtual national space. This data is often measured through remote control in terrain that is difficult for humans to access using devices such as UAVs and UGVs. Drones, one of the UAVs, are mainly used to acquire point cloud data, but photogrammetry using a vision camera, which takes a lot of time to create a point cloud map, is difficult to apply in construction sites where the terrain changes periodically and surveying is difficult. In this paper, we developed a point cloud mapping system by adopting non-repetitive scanning LiDAR and attempted to confirm improvements through field application. For accuracy analysis, a point cloud map was created through a 2 minute 40 second flight and about 30 seconds of software post-processing on a terrain measuring 144.5 × 138.8 m. As a result of comparing the actual measured distance for structures with an average of 4 m, an average error of 4.3 cm was recorded, confirming that the performance was within the error range applicable to the field.

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.

유기화합물의 구조분석에서 2D Carbon-13 INADEQUATE 실험의 정량적 고찰 (Quantitative Aspects of 2D Carbon-13 INADEQUATE Experiment of Organic Molecules)

  • 이석근
    • 분석과학
    • /
    • 제13권4호
    • /
    • pp.539-543
    • /
    • 2000
  • The quantitative aspects of 2D carbon-13 INADEQUATE (Incredible Natural Abundance DoublE QUAntum Transfer Experiment) experiment were studied on the basis of the time needed in various concentrations of samples. In order to evaluate the quantitative time of this experiment, eight compounds were selected (M. W. ca. 150-500). The effect on time needed of various concentrations showed exponential decay function, Y=$8.15X^{-0.64}$.

  • PDF

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.