• Title/Summary/Keyword: Quantum Dots(QD)

검색결과 116건 처리시간 0.036초

Optical Properties of InAs Quantum Dots Grown by Using Arsenic Interruption Technique

  • 최윤호;김희연;류미이;조병구;김진수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2011
  • GaAs (001) 기판에 MBE를 이용하여 자발형성법으로 성장한 InAs 양자점(QDs: quantum dots)의 광학적 특성을 PL (photoluminescence)과 TRPL (time-resolved PL)을 이용하여 분석하였다. InAs 양자점 성장 동안 In 공급은 계속하면서 As 공급을 주기적으로 차단과 공급을 반복하면서 성장하였다. As 차단과 공급을 1초, 2초, 그리고 3초씩 하면서 InAs 양자점을 성장하였다. 기준시료는 In과 As 공급을 중단하지 않고 20초 동안 성장하였다. As interruption mode로 성장한 시료들의 QD density는 기준시료에 비해 증가하였으며, size distribution도 기준시료에 비해 향상되었다. 기준시료와 비교하였을 때, As interruption mode로 성장한 시료들의 PL 피크는 적색이동 (red-shift)를 보였으며, PL 세기는 2배 이상 증가하였다. PL 소멸곡선은 파장이 증가함에 따라 점차 느려지다가 PL 피크에서 가장 느린 소멸을 보인 후 다시 점차 빠르게 소멸하였다. 시료의 온도를 10 K에서 60 K까지 증가하였을 때 PL 피크 에너지는 변하지 않았으며, PL 소멸시간은 서서히 증가함을 보였다. 온도를 더 증가하였을 때 PL 피크 에너지는 적색이동 하였으며 PL 소멸시간도 빠르게 감소함을 보였다. As interruption mode로 성장한 양자점 시료의 구조적 특성 변화에 의한 광학적 특성 변화를 확인하였다.

  • PDF

InAs 양자점의 광학적 성질에 미치는 초격자층의 영향 (Influence of GaAs/AlGaAs Superlattice Layers on Optical Properties of InAs Quantum Dots)

  • 정연길;최현광;박유미;황숙현;윤진주;이제원;임재영;전민현
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.146-151
    • /
    • 2004
  • We investigated the effects of high potential barriers on the optical characteristics of InAs quantum dots (QDs) by using photoluminescence (PL) and photoreflectance (PR) spectroscopy. A sample with regular InAs quantum dots on GaAs was grown by molecular beam epitaxy (MBE) as a reference. Another InAs QDs sample was embedded in single AlGaAs barriers. On the other hand, a sample with GaAs/AlGaAs superlattice barriers was adopted for comparison with a sample with a single AlGaAs layer. In results, we found that the emission wavelength of QDs was effectively tailored by using high potential barriers. Also, it was found that the optical properties of a sample with QDs embedded in GaAs/AlGaAs superlattices were better than those of a sample with QDs embedded in a single layer of AlGaAs barriers. We believe that GaAs/AlGaAs superlattice could effectively prevent the generation of defects.

Inverted CdSe@ZnS Quantum Dots Light-Emitting Diode using Low-Work Function Polyethylenimine Ethoxylated (PEIE) modified ZnO

  • Kim, Choong Hyo;Kim, Hong Hee;Hwang, Do Kyung;Suh, Kwang S;Park, Cheol Min;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.148-148
    • /
    • 2015
  • Over the past several years, Colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been developed for the future of optoelectronic applications. An inverted-type quantum-dot light-emitting-diode (QDLED), employing low work function organic material polyethylenimine ethoxylated(PEIE) (<10 nm)[1] modified ZnO nanoparticles (NPs) as electron injection and transport layer, was fabricated by all solution processing method, instead of electrode in the device. The PEIE surface modifier incorporated on the top of the ZnO NPs film, facilitates the enhancement of both electorn injection into the CdSe-ZnS QD emissive layer by lowering the workfunction of ZnO from 3.58eV to 2.87eV and charge balance on the QD emitter. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 7.5 V, the QDLED device emitted spectrally orange color lights with high luminance up to 11110 cd/m2, and showed current efficiency of 2.27 cd/A.[2]

  • PDF

디스플레이 고색 재현 형광 소재 기술

  • 최성우;김성민;오정록;윤철수
    • 세라미스트
    • /
    • 제21권1호
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, display technology has been focused in regard with with color reproduction, contrast ratio, image resolution and color bit. Among these technologies, the color reproducibliity of White, Red, Green, and Blue is associated with the TV plaform and is expressed as a major technology. Major TV platforms are divided into three categories since 2015, including LCD-based phosphor coverted LED BLU technology, QD sheet technology using nano-sized quantum dots, and OLED technology. In this paper, we describe the color reproducibility definition and background, luminescent materials with wide color gamut, color reproducibility of TV display performance, and discuss about next luminescent materials.

QD-LED용 무기계 홀전도층 NiO 박막 증착 연구 (Depositon of NiO films for Inorganic Hole-transporting Layer in QD-LED)

  • 정국채;오승균;김영국;최철진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.330-330
    • /
    • 2009
  • For the high-performance Quantum dots-Light Emitting Diodes in the near-infrared and visible spectrum, adequate electro- and hole-transporting layers are required. The operation lifetimes of typical materials used in OLEDs are very limited and degraded especially by the oxygen and humid atmosphere. In this work, NiO was selected as a possible hole-transporting layer replacing the TPD film used in QD-LEDs. About 40-nm-thick NiO films have been deposited by the rf-sputtering method on various technical substrates such as FTO/glass, ITO/glass, and ITO/PEN. For the balance of charge carriers and quenching consideration, the resistivity of the deposited NiO films was investigated controlling the oxygen in the sputtering gas. NiO films were fabricated at room temperature and about 6mTorr using pure Ar, 2.5%-, 5%-, and 10%-mixed $O_2$ in Ar respectively. We also investigated the rf-power dependence on NiO films in the range of 80 ~ 200 Watts. The resistivity of the samples was varied from highly conductive to resistive state. Also discussed are the surface roughness of NiO films to provide the smooth surface for the deposition of QDs.

  • PDF

Temperature Dependent Photoluminescence from InAs/GaAs Quantum Dots Grown by Molecular Beam Epitaxy

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.86-90
    • /
    • 2017
  • We have reported structural and optical properties of self-assembled InAs/GaAs quantum dot (QD) grown by molecular beam epitaxy with different arsenic to indium flux ratios (V/III ratios). By increasing the V/III ratio from 9 to 160, average diameter and height of the InAs QDs decreased, but areal density of them increased. The InAs QDs grown under V/III ratio of 30 had a highest-aspect-ratio of 0.134 among them grown with other conditions. Optical property of the InAs QD was investigated by the temperature-dependent photoluminescence (PL) and integrated PL. From the temperature dependence PL measurements of InAs QDs, the activation energies of $E_{a1}$ and $E_{a2}$ for the InAs QDs were obtained $48{\pm}3meV$ and $229{\pm}23meV$, respectively. It was considered that the values of $E_{a1}$ and $E_{a2}$ are corresponded to the energy difference between ground-state and first excited state, and the energy difference between ground-state and wetting layer, respectively.

양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구 (Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes)

  • 정성목;김재엽
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.113-120
    • /
    • 2022
  • Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. Here, we study on the coating condition of ZnS passivation layers on the photoanodes in QD-sensitized solar cells (QDSCs). The ZnS passivation layers are coated by successive ionic layer adsorption and reaction method, and as the cation precursor, zinc acetate and zinc nitrate are empolyed. Due to the higher pH of cation precursor solution, the ZnS loading is improved when the zinc acetate is used, compared to the zinc nitrate. This improved loading of ZnS leads to the reduced electron recombination at the surface of photoanodes and the enhaced conversion efficiency of QDSCs from 6.07% to 7.45%.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF

열처리 온도에 따른 InAs 양자점의 특성변화 (Abnormal behavior in photoluminescence of InAs quantum dots subjected to annealing treatment)

  • 최현광;이선연;이제원;조관식;전민현
    • 한국진공학회지
    • /
    • 제10권3호
    • /
    • pp.374-379
    • /
    • 2001
  • MBE를 이용하여 GaAs위에 InAs 양자점을 성장시키고 Ga, As, In, As의 순서로 셔터를 교대로 열어주는 방식으로 3주기 반복하여 InGaAs 층을 성장시키고 그 위에 다시 GaAs층을 성장시킨 시료(시료번호: QDl)에 대하여 온도를 변화시키며 열처리를 수행한 후 그 광학적 특성을 분석하였다. 기존의 다른 그룹들의 연구결과처럼, InAs 양자점을 성장시키고 GaAs 에피층을 barrier층으로 성장시킨 경우, 열처리 온도가 증가함에 따라 발광피크는 단파장쪽으로 이동하는 것을 확인하였다. 반면에, InGaAs층을 포함하고 있는 QDI 시료의 경우, 발광 피크의 위치가 열처리 온도가 $600^{\circ}C$가 될 때까지는 장파장 쪽으로 이동하다가, 그 이상의 온도에서는 단파장 쪽으로 이동하는 현상을 관찰하였다. 또한, 발광피크의 반치폭도 열처리 온도가 증가하면서 감소하는 경향을 보이다가 다시 증가되는 경향을 보이고 있다.

  • PDF

Inverted CdSe/ZnS Quantum Dots Light-Emitting Diode Using Low-Work Function Organic Material Polythylenimine Ethoylated

  • Kim, HongHee;Son, DongIck;Jin, ChangKyu;Hwang, DoKyung;Yoo, Tae-Hee;Park, CheolMin;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.246.1-246.1
    • /
    • 2014
  • Over the past several years, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED). In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[1] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 8 V, the QDLED device emitted spectrally orange color lights with high luminance up to 2450 cd/m2, and showed current efficacy of 0.6 cd/A, respectively.

  • PDF