DOI QR코드

DOI QR Code

Temperature Dependent Photoluminescence from InAs/GaAs Quantum Dots Grown by Molecular Beam Epitaxy

  • Lee, Kyoung Su (Department of Physics and Research Institute for Natural Sciences, Hanyang University) ;
  • Oh, Gyujin (Department of Physics and Research Institute for Natural Sciences, Hanyang University) ;
  • Kim, Eun Kyu (Department of Physics and Research Institute for Natural Sciences, Hanyang University) ;
  • Song, Jin Dong (Opto-Electronic Convergence System, Korea Institute of Science and Technology)
  • Received : 2017.06.16
  • Accepted : 2017.07.12
  • Published : 2017.07.31

Abstract

We have reported structural and optical properties of self-assembled InAs/GaAs quantum dot (QD) grown by molecular beam epitaxy with different arsenic to indium flux ratios (V/III ratios). By increasing the V/III ratio from 9 to 160, average diameter and height of the InAs QDs decreased, but areal density of them increased. The InAs QDs grown under V/III ratio of 30 had a highest-aspect-ratio of 0.134 among them grown with other conditions. Optical property of the InAs QD was investigated by the temperature-dependent photoluminescence (PL) and integrated PL. From the temperature dependence PL measurements of InAs QDs, the activation energies of $E_{a1}$ and $E_{a2}$ for the InAs QDs were obtained $48{\pm}3meV$ and $229{\pm}23meV$, respectively. It was considered that the values of $E_{a1}$ and $E_{a2}$ are corresponded to the energy difference between ground-state and first excited state, and the energy difference between ground-state and wetting layer, respectively.

Keywords

References

  1. J. Lee and D. Lee, J. Korean Phys. Soc. 58, 239 (2011). https://doi.org/10.3938/jkps.58.239
  2. E. T. Kim, Z. Chen, and A. Madhukar, J. Korean Phys. Soc. 49, S837 (2006).
  3. R. P. Smith, Im S. Han, and Jong S. Kim, J. Korean Phys. Soc. 64, 895 (2014). https://doi.org/10.3938/jkps.64.895
  4. T. V. Hakkarainen, J. Tommila, A. Schramm, A. Tukiainen, R. Ahorinta, M. Dumitrescu, and M Guina, Nanotech. 22, 295604 (2011). https://doi.org/10.1088/0957-4484/22/29/295604
  5. I. Kamiya, T. Shirasaka, K. Shimomura, and D. M. Tex, J. Cryst. Growth 323, 219 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.034
  6. P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, and B. A. Joyce, Phys. Rev. B 58, R10127 (1998). https://doi.org/10.1103/PhysRevB.58.R10127
  7. Q. Gong, P. Offermans, R. Notzel, P. M. Koenraad, and J. H. Wolter, Appl. Phys. Lett. 85, 5697 (2004). https://doi.org/10.1063/1.1831564
  8. K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamot, M. Sugawara, and Y. Arakawa, J. Cryst. Growth 378, 459 (2013). https://doi.org/10.1016/j.jcrysgro.2012.12.046
  9. K. Yamaguchi, K. Yujobo, and T. Kaizu, Jpn J. Appl. Phys. 39, 1245 (2000). https://doi.org/10.1143/JJAP.39.L1245
  10. U. W. Pohl, K. Potschke, A. Schliwa, F. Guffarth, D. Bimberg, N. D. Zakharov, P. Werner, M. B. Lifshits, V. A. Shchukin, and D. E. Jesson, Phys. Rev. B 72, 245332 (2005). https://doi.org/10.1103/PhysRevB.72.245332
  11. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, J. Appl. Phys. 67, 7034 (1990). https://doi.org/10.1063/1.345050
  12. R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg, J. Electron. Mater. 28, 520 (1999). https://doi.org/10.1007/s11664-999-0105-z
  13. Y. P. Varshni, Physca 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  14. L. M. Kong, Z. Y. Wu, Z. C. Feng, and I. T. Ferguson, J. Appl. Phys. 101, 126101 (2007). https://doi.org/10.1063/1.2745410
  15. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, Phys. Rev. B 60, 8276 (1999). https://doi.org/10.1103/PhysRevB.60.8276