• Title/Summary/Keyword: Quantum Chemical Calculation (QCC)

Search Result 4, Processing Time 0.015 seconds

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.

Quantum Chemical Calculations on the Conformational Structure of the Alanine Oligomer Model (알라닌 올리고머의 배좌구조에 관한 양자화학적 계산)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1563-1570
    • /
    • 2015
  • Conformational change during chain propagation of alanine oligomer was investigated by quantum chemical calculation(QCC) using 2~5mers(${\times}=2{\sim}5$) models. For estimation of the end group effects, two types of end group. "amide type" ($CH_3CONH-and-CONHCH_3$) and "methyl type" ($CH_3CONH-and-CONHCH_3$), were prepared as both ends(N-and-C). Conformers optimized for 5-mer converged to three types of ${\Phi}/{\Psi}$ : ${\alpha}$-helix(g+/g+, or g-/g-), PPII-like(extended helix-like, g+/g-, or g-/g+), and ${\beta}$-extended (t+/t-, or t-/t+), in the order of lower energy, and the energies of left- and right- handed conformers were the same (5-mer. amide type ${\Delta}E=-1.05$, right type ${\Delta}E=-1.62$). Energies of the monomer unit(${\Delta}E$) of ${\alpha}$-helix decreased with increases of monomer.

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation (양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.95-104
    • /
    • 2018
  • The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.