• Title/Summary/Keyword: Quantitative-structure activity relationship (QSAR)

Search Result 105, Processing Time 0.021 seconds

Synthesis and Evaluation of Antitumor Activity of 2- and 6-[(1,3- Benzothiazol-2-yl)aminomethyl]-5,8-dimethoxy-1,4-naphthoquinone Derivatives

  • Chung, Yong-Seog;Shin, Young-Kook;Zhan, Chang-Guo;Lee, Sung-Duck;Cho, Hoon
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.893-900
    • /
    • 2004
  • 2- or 6-Substituted BZT-N derivatives were synthesized, and their cytotoxic activity against can-cer L1210 and SNU-1 cells was examined. The antitumor action was also assessed in mice bearing S-180 cells in peritoneal cavity. In a comparison, it was found that 6-substituted BZT-N derivatives exhibited higher potencies in both bioactivities than 2-substituted BZT-N derivatives against L1210 cells in in vitro and S-180 in vitro tests exception of compound 36. Interestingly, it was observed that 2-substituted compound 36, which has methyl group at RI position, exhib-ited a better antitumor activity than 6-substituted compounds against L1210 and SNU-1 in vitro. The EDso value of 2-substituted compound 36 against L1210 was found to be comparable to the EDso value of adriamycin and was even better against the solid cancer cell line SNU-1. It was also observed that 2-substituted compound 36 showed better antitumor activity in mice bearing S-180 cells in the peritoneal cavity. The T/C (%) value of 2-substituted compound 36 was simi-lar to that of adriamycin. Quantitative structure-activity relationship (QSAR) tests reveal that the experimental E $D_{50}$ values against SNU-1 closely correlate with both the calculated HOMO ener-gies ( $E_{HOMO}$) and the measured H-NMR chemical shift of 3-H ($\delta$$_{H}$). The results suggests that a compound having higher $E_{HOMO}$ and $\delta$$_{H}$ values usually should have a lower E $D_{50}$ (SNU-1) value.lue.lue.lue.

Genetic Function Approximation and Bayesian Models for the Discovery of Future HDAC8 Inhibitors

  • Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.15.1-15.11
    • /
    • 2011
  • Background: Histone deacetylase (HDAC) 8 is one of its family members catalyzes the removal of acetyl groups from N-terminal lysine residues of histone proteins thereby restricts transcription factors from being expressed. Inhibition of HDAC8 has become an emerging and effective anti-cancer therapy for various cancers. Application computational methodologies may result in identifying the key components that can be used in developing future potent HDAC8 inhibitors. Results: Facilitating the discovery of novel and potential chemical scaffolds as starting points in the future HDAC8 inhibitor design, quantitative structure-activity relationship models were generated with 30 training set compounds using genetic function approximation (GFA) and Bayesian algorithms. Six GFA models were selected based on the significant statistical parameters calculated during model development. A Bayesian model using fingerprints was developed with a receiver operating characteristic curve cross-validation value of 0.902. An external test set of 54 diverse compounds was used in validating the models. Conclusions: Finally two out of six models based on their predictive ability over the test set compounds were selected as final GFA models. The Bayesian model has displayed a high classifying ability with the same test set compounds and the positively and negatively contributing molecular fingerprints were also unveiled by the model. The effectively contributing physicochemical properties and molecular fingerprints from a set of known HDAC8 inhibitors were identified and can be used in designing future HDAC8 inhibitors.

The Search of Pig Pheromonal Odorants for Biostimulation Control System Technologies: Ⅱ. Holographic QSAR Model for Binding Affinities between Ligands of Volatile Odorants Molecules and Porcine Odorant Binding Protein (pOBP) (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: Ⅱ. 휘발성 냄새분자의 리간드와 Porcine Odorant Binding Protein (pOBP) 사이의 결합 친화력에 관한 홀로그래피적 QSAR 모델)

  • Sung N. D.;Park C. S.;Choi Y. S.;Myung P. K.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • To search of a new porcine pheromonal odorants for biostimulation control system technologies to offer a potentially useful and practical way to improve reproductive efficiency in livestock species, the holographic quantitative structure activity relationship (HQSAR) model between odorants, 2-phenoxytetrahydrofurane (A), 2-cyclohexyl-oxytetrahydrofurane (B), derivatives and binding affinity constants (p[Od.]/sub 50/) for porcine odorant-binding protein (pOBP) as receptor of pig pheromones were derivated and disscused. The binding affinity constants of cyclohexyl substituents (A) for pOBP were higher (A>B) than that of phenyl substituents (B). It was revealed that the optimum HQSAR model XI using PLS analyses had a fragment length (5∼8) with chirality at 5 components and hologram length 97 bin, which had a cross-validated q²(predictablities) of 0.916, and a conventional correlation coefficient r² (fitness) of 0.988, respectively. From the atomic contribution, the C3 and C5 atom in 2-oxyfuryl group contributed to binding affinity constants, whereas the central carbon atom in tert-butyl group on the cyclohexyl ring and the C4 atom of furyl group parts showed no contribution.

Three Dimensional Quantitative Structure-Activity Relationship Analyses on the Fungicidal Activities of New Novel 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one Derivatives Using the Comparative Molecular Similarity Indices Analyses (CoMSIA) Methodology Based on the Different Alignment Approaches (상이한 정렬에 따른 비교분자 유사성 지수분석(CoMSIA) 방법을 이용한 새로운 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one 유도체들의 살균활성에 관한 3차원적인 정량적 구조와 활성과의 관계)

  • Sung, Nack-Do;Yoon, Tae-Yong;Song, Jong-Hwan;Jung, Hoon-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.26-34
    • /
    • 2005
  • 3D-QSAR studies for the fungicidal activities against resistance phytophthora blight (RPC; 95CC7303) and sensitive phytophthora blight (Phytopthora capsici) (SPC; 95CC7105) by a series of new 2-alkoxyphenyl-3-phenylthioisoindoline-1-one derivatives (A & B) were studieded using comparative molecular similarity indices analyses (CoMSIA) methodology. From the based on the results, the two CoMSIA models, R5 and S1: as the best models were derivated. The statistical results of the models showed the best predictability and fitness for the fungicidal activities based on the cross- validated value ($q^2=0.714{\sim}0.823$) and non cross-validated, value ($r^2_{ncv.}=0.918{\sim}0.954$), respectively. The model R5 for fungicidal activity of RPC generated from the field fit alignment and combination of electrostatic field, H-bond acceptor field and LUMO molecular orbital field. The model S1 (or S5) for fungicidal activity of SPC generated from the atom based fit alignment and combination of steric field and HOMO molecular orbital field. The models also shows that inclusion of H-bond acceptor field (A) improved the statistical significance of the models. From the based graphical analyses of CoMSIA contribution maps, it was revealed that the novel selective character for fungicidal activities between the two fungi by modify of X-sub-stituent on the N-phenyl group and R-substituent on the S-phenyl group will be able to achivement.

Three Dimensional Quantitative Structure-Activity Relationship on the Fungicidal Activities of New Novel 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one Derivatives Using the Comparative Molecular Field Analyses (CoMFA) Methodology Based on the Different Alignment Approaches (상이한 정렬에 따른 비교 분자장 분석(CoMFA) 방법을 이용한 새로운 2-Alkoxyphenyl-3-phenylthioisoindoline-1-one 유도체들의 살균활성에 관한 3차원적인 정량적 구조와 활성과의 관계)

  • Sung, Nack-Do;Yoon, Tae-Yong;Song, Jong-Hwan;Jung, Hoon-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • 3D QSAR studies for the fungicidal activities against resistive phytophthora blight (RPC; 95CC7303) and sensitive phytophthora blight (Phytopthora capsici) (SPC; 95CC7105) by a series of new 2-alkoxyphenyl-3-phenylthioisoindoline-1-one derivatives (X: A=propynyl & B=2-chloropropenyl) were studied using comparative molecular field analyses (CoMFA) methodology. The CoMFA models were generated from the two different alignment, atom based fit (AF) alignment and field fit (FF) alignment. The atom based alignment exhibited a higher statistical results than that of field fit alignment. The best models, A3 and A7 using combination fields of H-bond field, standard field, LUMO and HOMO molecular orbital field as additional descriptors were selected to improve the statistic of the present CoMFA models. The statistical results of the two models showed the best predictability of the fungicidal activities based on the cross-validated value $q^2\;(r^2_{cv.}=RPC:\;0.625\;&\;SPC:\;0.834)$, non cross-validated value $(r^2_{ncv.}=RPC:\;0.894\;&\;SPC:\;0.915)$ and PRESS value (RPC: 0.105 & SPC: 0.103), respectively. Based on the findings, the predictive ability and fitness of the model for SPC was better than that of the model for RPC. The fugicidal activities exhibited a strong correlation with steric $(66.8{\sim}82.8%)$, electrostatic $(10.3{\sim}4.6%)$ and molecular orbital field (SPC: HOMO, 12.6% and RPC: LUMO, 22.9%) factors of the molecules. The novel selective character for fungicidal activity between two fungi depend on the positive charge of ortho, meta-positions on the N-phenyl ring and size of hydrophilicity of a substituents on the S-phenyl ring.