Synthesis and Evaluation of Antitumor Activity of 2- and 6-[(1,3- Benzothiazol-2-yl)aminomethyl]-5,8-dimethoxy-1,4-naphthoquinone Derivatives

  • Chung, Yong-Seog (Department of Chemistry, Institute for Basic Science, Chungbuk National University) ;
  • Shin, Young-Kook (Department of Chemistry, Institute for Basic Science, Chungbuk National University) ;
  • Zhan, Chang-Guo (Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky) ;
  • Lee, Sung-Duck (Department of Statistics, Chungbuk National University) ;
  • Cho, Hoon (Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky)
  • Published : 2004.09.01

Abstract

2- or 6-Substituted BZT-N derivatives were synthesized, and their cytotoxic activity against can-cer L1210 and SNU-1 cells was examined. The antitumor action was also assessed in mice bearing S-180 cells in peritoneal cavity. In a comparison, it was found that 6-substituted BZT-N derivatives exhibited higher potencies in both bioactivities than 2-substituted BZT-N derivatives against L1210 cells in in vitro and S-180 in vitro tests exception of compound 36. Interestingly, it was observed that 2-substituted compound 36, which has methyl group at RI position, exhib-ited a better antitumor activity than 6-substituted compounds against L1210 and SNU-1 in vitro. The EDso value of 2-substituted compound 36 against L1210 was found to be comparable to the EDso value of adriamycin and was even better against the solid cancer cell line SNU-1. It was also observed that 2-substituted compound 36 showed better antitumor activity in mice bearing S-180 cells in the peritoneal cavity. The T/C (%) value of 2-substituted compound 36 was simi-lar to that of adriamycin. Quantitative structure-activity relationship (QSAR) tests reveal that the experimental E $D_{50}$ values against SNU-1 closely correlate with both the calculated HOMO ener-gies ( $E_{HOMO}$) and the measured H-NMR chemical shift of 3-H ($\delta$$_{H}$). The results suggests that a compound having higher $E_{HOMO}$ and $\delta$$_{H}$ values usually should have a lower E $D_{50}$ (SNU-1) value.lue.lue.lue.

Keywords

References

  1. Aviado, D. M. and Will, D. H., Pharmacology of naphthoquinones, with special reference to the antimalarial activity of Lapinone (WR 26,041). Am. J. Trop. Med. Hyg., 18, 188-198 (1969) https://doi.org/10.4269/ajtmh.1969.18.188
  2. Baik, K. U., Song, G. Y., Kim, Y., Sok, D. E., and Ahn, B. Z., 2-Substitued Naphthazarins; Synthesis and Antitumor Activity. Arch. Pharm. Med. Chem., 330, 377-382 (1997) https://doi.org/10.1002/ardp.19973301204
  3. Benthey, W. H., Robinson, R., and Weizmann, C., 3-Hydroxyphthalic and 3-Methoxyphthalic Acids and Their Derivatives. J. Chem. Soc., 104-112 (1907)
  4. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., and Mitchell, J. B., Evaluation of a tetrazolium-based semiiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res., 47, 936-942 (1987)
  5. Carter, A. H., Race, E., and Rowe, F. M., Bromination of 1,5-dihydroxy- and 1,5-diacetoxynaphthalene, 5-methoxy-1-naphthol and 1,5- dimethoxynaphthalene. J. Chem. Soc., 236-239 (1942) https://doi.org/10.1039/jr9420000236
  6. Chae, G. H., Song, G. Y., Kim, Y., Cho, H., Sok, D. E. and Ahn, B. Z., 2- or 6-(1-Azidoalkyl)-5,8-Dimethoxy-1,4-Naphthoquinone: Synthesis, Evaluation of Cytotoxic Activity, Antitumor Activity and Inhibitory Effect on DNA Topoisomerase-1. Arch. Pharm. Res., 22, 507-514 (1999) https://doi.org/10.1007/BF02979161
  7. Cho, H. and Chung, Y., Synthesis and Antitumor Activity of Naphthoquinone Derivatives (I). Kor. J. Med. Chem., 8, 3037 (1998)
  8. Foye, M. O., Cancer Chemotherapeutic Agents. American Chemical Society, Washington, D.C., p 203 (1995)
  9. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J.. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., AI-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A., Gaussian 03, Revision A. 1, Gaussian Inc., Pittsburgh, PA, 2003
  10. Hehre, W. J., Radom, L., Schleyer, P. V. R., and Pople, J. A., Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York,1987
  11. Hertzberg, R. P. and Dervan, P. B., Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry, 23, 3934-3945 (1984) https://doi.org/10.1021/bi00312a022
  12. Kelkar, V. V., Dhumal, V. R., Bhavsar, V. H., and Mardikar, B. R., Some aspects of activity profile of sodium lawsonate in mice and rats. Arch. Int. Pharmacodyn. Ther., 283, 71-79 (1986)
  13. Leopold, W. R., Shillis, J. L., Mertus, A. E., Nelson, J. M., Roberts, B. J., and Jackson, R. C., Anticancer activity of the structurally novel antibiotic CI-920 and its analogues. Cancer Res., 44, 1928-1932(1984)
  14. Lown, J. W, Sim, S. K., Majumdar, K. C., and Chang, R.Y., Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochem. Biophys. Res. Commun., 76(3), 705-710 (1977) https://doi.org/10.1016/0006-291X(77)91557-1
  15. Scheithauer, W., Von Hoff, D. D., Clark, G. M., Shillis, J. L., and Elslager, E. F., In vitro activity of the novel antitumor antibiotic fostriecin (CI-920) in a human tumor cloning assay. Eur. J.Cancer CIin. Oncol., 22, 921-926 (1986) https://doi.org/10.1016/0277-5379(86)90057-X
  16. Silverman, R. B., The Organic Chemistry of Drug Design and Drug Action. Academic Press, New York, pp 255-258 (1992)
  17. Skelton, F. S., Bowman, C. M., Porter, T. H., and Folkers, K., New quinolinequinone inhibitors of mitochondrial reductase systems and reversal by coenzyme Q. Biochem. Biophys. Res. Commun., 43,102-107 (1971) https://doi.org/10.1016/S0006-291X(71)80092-X
  18. Song, G. Y., Kim, Y., Cho, H., and Ahn, B. Z., Naphthazarin Derivatives (VII): Antitumor Action against ICR Mice Bearing Ascitic S-180 Cells. Arch. Pharm. Res., 24, 190 (2001) https://doi.org/10.1007/BF02978254
  19. Tewey, K. M., Chen, G. L., Nelson, E. M., and Liu, L. F., Intercalative antitumor drugs interfere with the breakagereunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem., 259, 9182-9187 (1984)
  20. You, Y. J., Zheng, X. G., Kim, Y., and Ahn, B. Z., Naphthazarin derivatives: synthesis, cytotoxic mechanism and evaluation of antitumor activity. Arch. Pharm. Res., 21, 595-598 (1998a) https://doi.org/10.1007/BF02975381
  21. You, Y. J. and Ahn, B. Z., 6-(1-Alkenoyloxyalkyl)-5,8-dimethoxy-1,4-naphthoquinone Derivatives:Synthesis and Evaluation of Antitumor Activity. Arch. Pharm. Res., 21, 738-743 (1998b) https://doi.org/10.1007/BF02976768