• Title/Summary/Keyword: Quantitative real-time PCR

Search Result 751, Processing Time 0.022 seconds

Evaluation of DNA Fragments on Boar Sperm by Ligation-mediated Quantitative Real Time PCR

  • Lee, Eun-Soo;Choi, Sun-Gyu;Yang, Jae-Hun;Bae, Mun-Sook;Park, Jin-Young;Park, Hong-Min;Han, Tae-Kyu;Hwang, You-Jin;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • Sperm chromatin integrity is essential for successful fertilization and development of an embryo. Reported here is a quantification of DNA fragments which is intimately associated with reproductive potential to provide one of criteria for sperm chromatin integrity. Three sperm populations were considered: CONTROL (no treatment), UV irradiation (48mW/$cm^2$, 1h) and $H_2O_2$ (oxidative stress induced by hydrogen peroxide, 10 mM, 50 mM and 100 mM). DNA fragments in boar sperm were evaluated by using ligation-mediated quantitative real-time polymerase chain reaction (LM-qPCR) assay, which relies on real-time qPCR to provide a measure of blunt 5' phosphorylated double strand breaks in genomic DNA. The results in agarose gel electrophoresis showed no significant DNA fragmentation and no dose-dependent response to $H_2O_2$. However, the remarkable difference in shape and position was observed in melting curve of LM-qPCR. This result supported that the melting curve analysis of LM-qPCR presented here, could be more sensitive and accurate than previous DNA fragmentation assay method.

Development of Two Quantitative Real-Time PCR Diagnostic Kits for HPV Isolates from Korea

  • Jeeva, Subbiah;Kim, Nam-Il;Jang, In-Kwon;Choi, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1350-1358
    • /
    • 2012
  • Viral pathogens, alongside other pathogens, have major effects on crustacean aquaculture. Hepatopancreatic parvovirus (HPV) is an emerging virus in the shrimp industry and has been detected in shrimp farms worldwide. The HPV genome has greater diversity than other shrimp viruses owing to its wide host range and geographical distribution. Therefore, developing diagnostic tools is essential to detect even small copy numbers from the target region of native HPV isolates. We have developed two easy to use quantitative real-time PCR kits, called Green Star and Dual Star, which contain all of the necessary components for real-time PCR, including HPV primers, using the primers obtained from the sequences of HPV isolates from Korea, and analyzed their specificity, efficiency, and reproducibility. These two kits could detect from 1 to $1{\times}10^9$ copies of cloned HPV DNA. The minimum detection limits obtained from HPV-infected shrimp were $7.74{\times}10^1$ and $9.06{\times}10^1$ copies in the Green Star and Dual Star assay kits, respectively. These kits can be used for rapid, sensitive, and efficient screening for HPV isolates from Korea before the introduction of postlarval stages into culture ponds, thereby decreasing the incidence of early development of the disease.

Analysis of Differentially Expressed Genes in Kiwifruit Actinidia chinensis var. 'Hongyang' (참다래 '홍양' 품종의 차등발현유전자 분석)

  • Bae, Kyung-Mi;Kwack, Yong-Bum;Shin, II-Sheob;Kim, Se-Hee;Kim, Jeong-Hee;Cho, Kang-Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.448-456
    • /
    • 2011
  • We used suppression subtractive hybridization (SSH) combined with mirror orientation selection (MOS) method to screen differentially expressed genes from red-fleshed kiwifruit 'Hongyang'. As a result, the 288 clones were obtained by subcloning PCR product and 192 clones that showed positive clones on colony PCR analysis were selected. All the positive clones were sequenced. After comparisons with the NCBI/Genbank database using the BLAST search revealed that 30 clones showed sequence similarity to genes from other organisms; 10 clones showed significant sequence similarity to known genes. Among these clones, 3 clones (AcF21, AcF42 and AcF106) had sequence homology to 1-aminicyclopropane-carboxylic acid (ACC)-oxidase (ACO) that known to be related to fruit ripening. The expression patterns of differentially expressed genes were further investigated to validate the SSH data by reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qReal-time PCR) analysis. All the data from qReal-time PCR analysis coincide with the results obtained from RT-PCR analysis. Three clones were expressed at higher levels in 'Hongyang' than 'Hayward'. AcF21 was highly expressed in the other genes at 120 days after full bloom (DAFB) and 160 DAFB of 'Hongyang'.

Real-Time RT-PCR for Quantitative Detection of Bovine Viral Diarrhoea Virus during Manufacture of Biologics (생물의약품 제조공정에서 Bovine Viral Diarrhoea Virus 정량 검출을 위한 Real-Time RT-PCR)

  • Cho, Hang-Mee;Lee, Dong-Hyuck;Kim, Hyun-Mi;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue engineered products, and cell therapy. Manufacturing processes for the biologics using bovine materials have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine viral diarrhoea virus (BVDV) is the most common bovine pathogen and has widely been known as a contaminant of biologics. In order to establish the validation system for the BVDV safety of biologics, a real-time RT-PCR method was developed for quantitative detection of BVDV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BVDV RNA was selected, and BVDV RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 1 $TCID_{50}/mL$. The rent-time RT-PCR method was validated to be reproducible and very specific to BVDV. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BVDV. BVDV RNA could be quantified in CHO cell as well as culture supernatant. Also the real-time RT-PCR assay could detect $10TCID_{50}/mL$ of BVDV artificially contaminated in bovine collagen.

Characterization of Differentiation of the Supernumerary Dental Pulp Stem Cells toward the Odontoblast by Application Period of Additives (과잉치 치수유래 줄기세포의 분화제 처리 기간에 따른 상아모세포 발현 특성)

  • Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.312-318
    • /
    • 2015
  • The aim of this study was to investigate the possibility of the supernumerary teeth for the stem cell source in dentistry. The Real Time Quantitative Reverse Transcription Polymerase Chain Reaction (Real Time qRT-PCR) method was used to evaluate the differentiation toward the odontoblast of the supernumerary dental pulp stem cells (sDPSCs). Supernumerary dental pulp stem cells were obtained from 3 children (2 males and 1 female, age 7 to 9) diagnosed that the eruption of permanent teeth was disturbed by supernumerary teeth. The common genes for odontoblasts are alkaline phosphatase (ALP), osteocalcin (OC), osteonectin (ON), dentin matrix acidic phosphoprotein 1 (DMP-1), dentin sialophosphoprotein (DSPP). The sDPSCs were treated for 0 days, 8 days and 14 days with additives and then Real Time qRT-PCR was performed in intervals of 0 days, 8 days and 14 days. The alizarin-red solution staining was performed to visualize the stained color for the degree of calcification at 7 days, 14 days, 21 days and 28 days after treating additives to the sDPSCs. From the result of the Real Time qRT-PCR, the manifestation exhibit maximum value at 8 days after additive treatment and shifted to a decrease trend at 14 days. Alizarin-red solution staining exhibit light results at 7 days after staining and generalized dark result at 14 days. Consequently, in studies with sDPSCs, appropriate treatment time of additives for Real Time qRT-PCR is 8 days. Also, a suitable period of Alizarin-red solution staining is 14 days.

Quantification of White Spot Syndrome Virus (WSSV) in Seawaters Using Real-Time PCR and Correlation Analyses between WSSV and Environmental Parameters (Real-Time PCR을 이용한 해수 존재 흰반점 바이러스의 정량 및 양식 환경인자와의 상관관계 분석)

  • Song, Jae-Ho;Choo, Yoe-Jin;Cho, Jang-Cheon
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • White Spot Syndrome Virus (WSSV) is one of the most virulent viral agents in the penaeid shrimp culture industry. In this study, WSSV in a Fenneropenaeus chinensis shrimp farm and an adjacent seawater were concentrated using a membrane filtration and quantified using the quantitative real-time PCR (QRT-PCR) method with newly designed primers and Taqman probe. Sensitivity of primers and probe was proven by WSSV standard curve assay in QRT-PCR. In order to demonstrate the relationship between WSSV and environmental parameters, physicochemical and biological parameters of the farm and influent seawaters were monitored from June to September, 2007. The abundance of WSSV ranged 3,814-121,546 copies per 1 liter of seawater, which was correlated with fecal enterococci ($r^2=0.9$, p=0.02), chlorophyll ${\alpha}$ ($r^2=0.8$, p=0.03) and $BOD_5$ ($r^2=0.8$, p=0.07). Subsequently, it is concluded that the QRT-PCR method using Taqman probe established in this study was efficient to clarify the quantification of WSSV in seawaters. Statistical analyses of environmental parameters obtained in this study also showed that the abundance of WSSV was correlated with several biological parameters rather than physicochemical parameters.

Development of TaqMan Probe Real-Time RT-PCR for Quantitative Detection of Porcine Transmissible Gastroenteritis Virus During the Manufacture of Biopharmaceuticals (생물의약품 제조 공정에서 Porcine transmissible gastroenteritis virus 정량 검출을 위한 TaqMan Probe Real-Time RT-PCR 개발)

  • Lee, Jae Il;Han, Sang Eun;Kim, In Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Biopharmaceuticals and the cell substrates used for their manufacture are currently tested for porcine adventitious viruses due to the widespread use of porcine trypsin in cell culture. Porcine transmissible gastroenteritis virus (PTGV) is one of the major adventitious porcine viruses causing contaminated during the manufacture of biopharmaceuticals. Therefore, rapid and sensitive detection of PTGV is essential in ensuring the safety of biopharmaceuticals. A TaqMan probe real-time RT-PCR method was developed for the quantitative detection of PTGV contamination in cell substrates, raw materials, manufacturing processes, and final products, as well as PTGV clearance validation. Specific primers for the amplification of PTGV RNA were selected, and PTGV RNA was quantified by use of a specific TaqMan probe. Specificity, limit of detection (LOD), and robustness of the method was validated according to international guidelines on the validation of nucleic acid amplification tests. The sensitivity of the assay was calculated to be 1.10 × 100 TCID50/ml. The real-time RT-PCR method was validated to be reproducible, very specific to PTGV, and robust. The established real-time RT-PCR assay was successfully applied to the validation of Chinese Hamster Ovary (CHO)-K1 cells artificially infected with PTGV.

Quantitative Analysis of Feline Calicivirus Inactivation using Real-time RT-PCR (Real-time RT-PCR을 이용한 Feline Calicivirus 불활성화의 정량적 분석)

  • Jeong, Hye Mi;Kim, Kwang Yup
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • Norovirus causes acute gastroenteritis in all age groups and its food poisoning outbreaks are rapidly increasing in Korea. Reverse transcription-polymerase chain reaction (RT-PCR) is most widely used for the rapid detection of foodborne viruses due to high sensitivity. However, the false positive results of RT-PCR obtained against already inactivated viruses could be a serious drawbacks in food safety area. In this study, we investigated a method to yield true positive RT-PCR results only with alive viruses. To decompose the RNA genes from dead viruses, the enzymatic treatments composed of proteinse K and Ribonuclease A were applied to the sanitized and inactivated virus particles. Another aim of this study was to quantify the efficiencies of several major sanitizing treatments using real-time RT-PCR. Feline calicivirus (FCV) that belongs to the same Caliciviridae family with norovirus was used as a surrogate model for norovirus. The initial level of virus in control suspension was approximately $10^4$ PFU/mL. Most of inactivated viruses treated with the enzymatic treatment for 30 min at $37^{\circ}C$ were not detected in RT-PCR, Quantification results to verify the inactivation efficiencies of sanitizing treatments using real-time RT-PCR showed no false positive in most cases. We could successfully develope a numerical quantification process for the inactivated viruses after major sanitizing treatments using real-time RT-PCR. The results obtained in this study could provide a novel basis of rapid virus quantification in food safety area.

Development of Quantitative Real-Time PCR Primers for Detection of Prevotella intermedia

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • Prevotella intermedia-specific quantitative real-time PCR (qPCR) primers were previously designed based on the nucleotide sequences of RNA polymerase ${\beta}$-subunit gene (rpoB). However, the several clinical strains isolated from Korean populations are not detectable by the qPCR primers. The purpose of this study was to develop new P. intermedia-specific qPCR primers based on the rpoB. The specificity of the primers was determined by conventional PCR with 12 strains of P. intermedia and 52 strains (52 species) of non-P. intermedia bacteria. The sensitivity of primers was determined by qPCR with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of P. intermedia ATCC $25611^T$. The data indicated that only P. intermedia strains were detected by the P intermedia-specific qPCR primers (RTPiF2/RTPiR2); in addition, as little as 40 fg of P. intermedia genomic DNA could be detected. These results suggest that these qPCR primers are useful in detecting P. intermedia from the bacterial infectious lesions including dental plaque and oral tissue lesions.

Quantitative Analysis of Two Genetically Modified Maize Lines by Real-Time PCR

  • Lee Seong-Hun;Kang Sang-Ho;Park Yong-Hwan;Min Dong-Myung;Kim Young-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.205-211
    • /
    • 2006
  • A quantitative analytical method to detect new lines of genetically modified (GM) maize, NK603 and TC1507, has been developed by using a real-time polymerase chain reaction (PCR). To detect these GM lines, two specific primer pairs and probes were designed. A plasmid as a reference molecule was constructed from an endogenous DNA sequence of maize, a universal sequence of a cauliflower mosaic virus (CaMV) 35S promoter used in most GMOs, and each DNA sequence specific to the NK603 and TC1507 lines. For the validation of this method, the test samples of 0, 0.1, 0.5, 1.0, 3.0, 5.0, and 10.0% each of the NK603 and TC1507 GM maize were quantitated. At the 3.0% level, the biases (mean vs. true value) for the NK603 and TC1507 lines were 3.3% and 15.7%, respectively, and their relative standard deviations were 7.2% and 5.5%, respectively. These results indicate that the PCR method developed in this study can be used to quantitatively detect the NK603 and TC1507 lines of GM maize.