Quantitative Analysis of Two Genetically Modified Maize Lines by Real-Time PCR

  • Lee Seong-Hun (Division of Inspection, Experiment Research Institute of National Agricultural Products Quality Management Service) ;
  • Kang Sang-Ho (Gene Expression Team, National Institute of Agricultural Biotechnology) ;
  • Park Yong-Hwan (Gene Expression Team, National Institute of Agricultural Biotechnology) ;
  • Min Dong-Myung (Division of Inspection, Experiment Research Institute of National Agricultural Products Quality Management Service) ;
  • Kim Young-Mi (Gene Expression Team, National Institute of Agricultural Biotechnology)
  • Published : 2006.02.01

Abstract

A quantitative analytical method to detect new lines of genetically modified (GM) maize, NK603 and TC1507, has been developed by using a real-time polymerase chain reaction (PCR). To detect these GM lines, two specific primer pairs and probes were designed. A plasmid as a reference molecule was constructed from an endogenous DNA sequence of maize, a universal sequence of a cauliflower mosaic virus (CaMV) 35S promoter used in most GMOs, and each DNA sequence specific to the NK603 and TC1507 lines. For the validation of this method, the test samples of 0, 0.1, 0.5, 1.0, 3.0, 5.0, and 10.0% each of the NK603 and TC1507 GM maize were quantitated. At the 3.0% level, the biases (mean vs. true value) for the NK603 and TC1507 lines were 3.3% and 15.7%, respectively, and their relative standard deviations were 7.2% and 5.5%, respectively. These results indicate that the PCR method developed in this study can be used to quantitatively detect the NK603 and TC1507 lines of GM maize.

Keywords

References

  1. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1997. Current Protocols in Molecular Biology, vol 2. Appendix 1B.1, John Wiley & Sons
  2. Clive, J. 2004. Preview: Global status of commercialized biotech/GM crops 2004. ISAAA, No. 32
  3. Firko, M. J. 2001. Apporval of Mycogen Seed c/o Dow Agrosciences LLC and Pioneer Hi-Bred International Inc. Request seeking a determination of non-regulated status for Bt cry1F insect-resistant, glufosinate-tolerant corn line 1507. USDA-APHIS Environmental Assessment
  4. Hardegger, M., P. Brodmann, and A. Herrmann. 1999. Quantitative detection of the 35S promoter and the NOS terminator using quantitative PCR. Eur. Food Res. Technol. 209: 83-87 https://doi.org/10.1007/s002170050462
  5. Heo, M.-S., J.-H. Kim, S.-H. Park, G.-J. Woo, and H.-Y. Kim. 2004. Detection of genetically modified maize by multiplex PCR method. J. Microbiol. Biotechnol. 14: 1150-1156
  6. Holst-Jensen, A., S. B. Ronning, A. Lovseth, and K. G. Berdal. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 375: 985-993 https://doi.org/10.1007/s00216-003-1767-7
  7. Huang, H.-Y. and T.-M. Pan. 2004. Detection of genetically modified maize Mon810 and NK603 by multiplex and realtime polymerase chain reaction methods. J. Agric. Food Chem. 52: 3264-3268 https://doi.org/10.1021/jf049944o
  8. Hupfer, C., H. Hotzel, K. Sachse, and K. H. Engel. 1997. Detection of genetically modified insect-resistant Bt maize by means of polymerase chain reaction. Z. Lebensm. Unters Forsch. 205: 442-445 https://doi.org/10.1007/s002170050196
  9. Hupfer, C., H. Hotzel, K. Sachse, and K. H. Engel. 1998. Detection of the genetic modification in heat-treated products of Bt maize by polymerase chain reaction. Z. Lebensm. Unters Forsch. 206: 203-207 https://doi.org/10.1007/s002170050243
  10. Hupfer, C., H. Hotzel, K. Sachse, F. Moreano, and K. H. Engel. 2000. PCR-based quantification of genetically modified Bt maize: Single-competitive versus dual competitive approach. Eur. Food Res. Technol. 212: 95-99 https://doi.org/10.1007/s002170000208
  11. Hurst, C. D., A.1 Knight, and I. Bruce. 1999. PCR detection of genetically modified soya and maize in foodstuffs. Mol. Breeding 5: 579-586 https://doi.org/10.1023/A:1009654623025
  12. Hwang, O.-H., H.-G. Park, E.-H. Paek, S.-H. Paek, and W.-M. Park. 2004. Production of recombinant proteins as immuno-analytical marker of genetically modified organisms (GMO). J. Microbiol. Biotechnol. 14: 783-788
  13. Jankiewicz, A., H Broll, and J. Zagon. 1999. The official method for the detection of genetically modified soybeans: A semi-quantitative study of sensitivity limits with glyphosate-tolerant soybeans and insect-resistant Bt maize. Eur. Food Res. Technol. 209: 77-82 https://doi.org/10.1007/s002170050461
  14. Kim, Y. T., B. K. Park, E. I. Hwang, N. H. Yim, S. H. Lee, and S. U. Kim. 2004. Detection of recombinant marker DNA in genetically modified glyphosate tolerant soybean and use in environmental risk assessment. J. Microbiol. Biotechnol. 14: 390-394
  15. Kuribara, H., Y. Shindo, T. Matsuoka, K. Takubo, S. Futo, N. Aoki, T. Hirao, H. Akiyama, Y. Goda, M. Toyoda, and A. Hino. 2002. Novel reference molecules for quantitation of genetically modified maize and soybean. J. AOAC Int. 85: 1077-1089
  16. Matsuoka, T., K. Hideo, H. Akiyama, H. Miura, Y. Goda, Y. Kusakabe, K. Isshiki, M. Toyoda, and A. Hino. 2001. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize. J. Food Hyg. Soc. Japan 42: 24-32 https://doi.org/10.3358/shokueishi.42.24
  17. Matsuoka, T., K. Hideo, K. Takubo, H. Akiyama, H. Miura, Y. Goda, Y. Kusakabe, K. Isshiki, M. Toyoda, and A. Hino. 2002. Detection of recombinant DNA segments introduced to genetically modified maize (Zea mays). J. Agric. Food Chem. 50: 2100-2109 https://doi.org/10.1021/jf011157t
  18. Matsuoka, T., Y. Kawashima, H. Akiyama, H. Miura, Y. Goda, Y. Kusakabe, K. Isshiki, M. Toyoda, and A. Hino. 2000. A method of detecting recombinant DNAs from four lines of genetically modified maize. J. Food Hyg. Soc. Japan 41: 137-143 https://doi.org/10.3358/shokueishi.41.137
  19. Rho, J. K., T. Lee, S. I. Jung, T. S. Kim, Y. H. Park, and Y. M. Kim. 2004. Qualitative and quantitative PCR methods for detection of three lines of genetically modified potatoes. J. Agric. Food Chem. 52: 3269-3274 https://doi.org/10.1021/jf0499020
  20. Shindo, Y., H. Kuribara, T. Matsuoka, S. Futo, C. Sawada, J. Shono, H. Akiyama, Y. Goda, M. Toyoda, and A. Hino. 2002. Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecule. J. AOAC Int. 85: 1119-1126
  21. Studer, E., C. Rhyner, J. Luthy, and P. Hubner. 1998. Quantitative competitive PCR for the detection of genetically modified soybean and maize. Z. Lebensm. Unters Forsch. 207: 207-213 https://doi.org/10.1007/s002170050320
  22. Vaitilingom, M., H Pijnenburg, F. Gendre, and P. Brignon. 1999. Real-time PCR quantitative PCR detection of genetically modified maximizer maize and roundup ready soybean in some representative foods. J. Agric. Food Chem. 47: 5261-5266 https://doi.org/10.1021/jf981208v
  23. Vollenhofer, S., K. Burg, J. Schmidt, and H. Kroath. 1999. Genetically modified organisms in food-screening and specific detection by polymerase chain reaction. J. Agric. Food Chem. 47: 5038-5043 https://doi.org/10.1021/jf990353l
  24. Wurz, A., A. Bluth, P. Zeltz, C. Pfeifer, and R. Willlmund. 1999. Quantitative analysis of genetically modified organisms (GMO) in processed food by PCR-based methods. Food Control 10: 385-389 https://doi.org/10.1016/S0956-7135(99)00080-8
  25. Zimmermann, A., J. Luthy, and U. Pauli. 2000. Event-specific transgene detection in Bt11 corn by quantitative PCR at the integration site. Lebensm. Wiss U. Technol. 33: 210-216 https://doi.org/10.1006/fstl.2000.0637