• 제목/요약/키워드: Quantitative phase imaging

검색결과 47건 처리시간 0.027초

Nonparaxial Imaging Theory for Differential Phase Contrast Imaging

  • Jeongmin Kim
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.537-544
    • /
    • 2023
  • Differential phase contrast (DPC) microscopy, a central quantitative phase imaging (QPI) technique in cell biology, facilitates label-free, real-time monitoring of intrinsic optical phase variations in biological samples. The existing DPC imaging theory, while important for QPI, is grounded in paraxial diffraction theory. However, this theory lacks accuracy when applied to high numerical aperture (NA) systems that are vital for high-resolution cellular studies. To tackle this limitation, we have, for the first time, formulated a nonparaxial DPC imaging equation with a transmission cross-coefficient (TCC) for high NA DPC microscopy. Our theoretical framework incorporates the apodization of the high NA objective lens, nonparaxial light propagation, and the angular distribution of source intensity or detector sensitivity. Thus, our TCC model deviates significantly from traditional paraxial TCCs, influenced by both NA and the angular variation of illumination or detection. Our nonparaxial imaging theory could enhance phase retrieval accuracy in QPI based on high NA DPC imaging.

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton

  • Lee, SangYun;Kim, Kyoohyun;Mubarok, Adam;Panduwirawan, Adisetyo;Lee, KyeoReh;Lee, Shinhwa;Park, HyunJoo;Park, YongKeun
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.691-697
    • /
    • 2014
  • Optical measurements of the morphological and biochemical imaging of phytoplankton are presented. Employing quantitative phase imaging techniques, 3-D refractive index maps and high-resolution 2-D quantitative phase images of individual live phytoplankton are simultaneously obtained without exogenous labeling agents. In addition, biochemical information of individual phytoplankton including volume, mass, and density of individual phytoplankton are also quantitatively obtained from the measured refractive index distributions. We expect the present method to become a powerful tool for the study of phytoplankton.

Simultaneous Unwrapping Phase and Error Recovery from Inhomogeneity (SUPER) for Quantitative Susceptibility Mapping of the Human Brain

  • Yang, Young-Joong;Yoon, Jong-Hyun;Baek, Hyun-Man;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권1호
    • /
    • pp.37-49
    • /
    • 2018
  • Purpose: The effect of global inhomogeneity on quantitative susceptibility mapping (QSM) was investigated. A technique referred to as Simultaneous Unwrapping Phase with Error Recovery from inhomogeneity (SUPER) is suggested as a preprocessing to QSM to remove global field inhomogeneity-induced phase by polynomial fitting. Materials and Methods: The effect of global inhomogeneity on QSM was investigated by numerical simulations. Three types of global inhomogeneity were added to the tissue susceptibility phase, and the root mean square error (RMSE) in the susceptibility map was evaluated. In-vivo QSM imaging with volunteers was carried out for 3.0T and 7.0T MRI systems to demonstrate the efficacy of the proposed method. Results: The SUPER technique removed harmonic and non-harmonic global phases. Previously only the harmonic phase was removed by the background phase removal method. The global phase contained a non-harmonic phase due to various experimental and physiological causes, which degraded a susceptibility map. The RMSE in the susceptibility map increased under the influence of global inhomogeneity; while the error was consistent, irrespective of the global inhomogeneity, if the inhomogeneity was corrected by the SUPER technique. In-vivo QSM imaging with volunteers at 3.0T and 7.0T MRI systems showed better definition in small vascular structures and reduced fluctuation and non-uniformity in the frontal lobes, where field inhomogeneity was more severe. Conclusion: Correcting global inhomogeneity using the SUPER technique is an effective way to obtain an accurate susceptibility map on QSM method. Since the susceptibility variations are small quantities in the brain tissue, correction of the inhomogeneity is an essential element for obtaining an accurate QSM.

편광 격자 기반 정량적 위상 이미징을 위한 미분 간섭 현미경 모듈 개발 (Differential Interference Contrast Microscopic Module Using a Polarization Grating for Quantitative Phase Imaging)

  • 조진희;주기남
    • 한국광학회지
    • /
    • 제34권6호
    • /
    • pp.261-268
    • /
    • 2023
  • 본 연구에서는 간단한 구조의 층밀림 간섭계 기반의 정량적 위상 이미징을 위한 미분 간섭 현미경 모듈을 제안한다. 제안하는 모듈은 복굴절성과 편광 광 분할기의 특성을 갖는 기하 위상 소자 중의 하나인 편광 격자를 이용하여 층밀림 간섭계 구조로 구성되고, 편광 카메라를 통해 획득된 4개의 편광 영상으로 정량적인 위상차 영상뿐만 아니라 일반적인 명시야 현미경 영상을 동시에 추출할 수 있다. 또한, 제안하는 모듈의 실시간 영상 획득 가능성, 안정성 및 소형화로 인해 기존의 현미경에 편리하게 적용할 수 있다. 제안하는 시스템을 검증하기 위해 다양한 시편에 대한 명시야 영상 및 위상차 영상을 획득하였고, 또한 이들 영상들을 합성하여 보다 가독성이 높은 시편 영상을 획득하였다.

Phase Imaging of Worn Surface of TiN Coating and Interpretation by Force Spectroscopy

  • Hyo Sok;Chizhik, S-A;I Luzinov
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.69-75
    • /
    • 2000
  • The paper compares topography, phase contrast and force spectroscopy in atomic force microscopy data for evaluating the microheterogeneity of surface layer. The worn surface of ion-plated TiN coating was measured using both a laboratory-built and a commercial AFM. The results of analysis revealed structural and micromechanical heterogeneity of the worn surfaces. We demonstrated that the phase image allows relatively qualitative estimation of elastic modulus of the sample surface. The tribolayer formed in the worn surface possessed much lower stiffness than the original coating. It is shown that the most stable phase imaging is provided with a stiff cantilever. In this case, phase contrast is well conditioned, first of all, by microheterogeneity of elastic properties of the investigated surfaces. In this study an attempt was also made to correlate the results of phase imaging with that of the farce spectroscopy. The joint analysis of information on the surface properties obtained by the phase imaging and quantitative data measured with the force spectroscopy methods allows a better understanding of the nature of the surface micromechanical heterogeneity.

  • PDF

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

MR PC 영상을 이용한 유체 흐름 분석 (Measurement of Flow Velocity and Flow Visualization with MR PC Image)

  • 김수정;이동혁;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF

An MRI-Based Quantification for Correlation of Imaging Biomarker and Clinical Performance in Chronic Phase of Carbon Monoxide Poisoning

  • Lee, Aleum;Hwang, Ji-sun;Bae, Won-kyung;Park, Jai-soung;Goo, Dong Erk;Park, Sung-Tae
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권3호
    • /
    • pp.241-250
    • /
    • 2019
  • Purpose: The purpose of this study was to determine the relation between quantitative magnetic resonance imaging biomarkers, and clinical performances in chronic phase of carbon monoxide intoxication. Materials and Methods: Eighteen magnetic resonance scans and cognitive evaluations were performed, on patients with carbon monoxide intoxication in chronic phase. Apparent diffusion coefficient (ADC) ratios of affected versus unaffected centrum semiovale, and corpus callosum were obtained. Signal intensity (SI) ratios between affected centrum semiovale, and normal pons in T2-FLAIR (fluid-attenuated inversion recovery) images were obtained. The Mini-Mental State Exam, and clinical outcome scores were assessed. Correlation coefficients were calculated, between MRI and clinical markers. Patients were further classified into poor-outcome and good-outcome groups based on clinical performance, and imaging parameters were compared. T2-SI ratio of centrum semiovale was compared, with that of 18 sex-matched and age-matched controls. Results: T2-SI ratio of centrum semiovale was significantly higher in the poor-outcome group, than that in the good-outcome group and was strongly inversely correlated, with results from the Mini-Mental State Exam. ADC ratios of centrum semiovale were significantly lower in the poor outcome group than in the good outcome group, and were moderately correlated with the Mini-Mental State Exam score. Conclusion: A higher T2-SI and a lower ratio of ADC values in the centrum semiovale, may indicate presence of more severe white matter injury and clinical impairment. T2-SI ratio and ADC values in the centrum semiovale, are useful quantitative imaging biomarkers for correlation with clinical performance in individuals with carbon monoxide intoxication.

살아있는 세포 영상획득을 위한 common-path phase microscopy (Common-path phase microscopy for lives cell imaging)

  • 이지용;이승락;;김덕영
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.273-274
    • /
    • 2008
  • We present a quantitative phase microscopy for live cells. This method uses the principles of common path inteferometry and single shot phase image. This system has the ability to measure live cells quantitatively with subnanometer path length stability and millisecond scale aquisition time.

  • PDF