• Title/Summary/Keyword: Quantitative Trait

Search Result 323, Processing Time 0.024 seconds

Evaluation of agronomic traits variability in wheat germplasm

  • Yoon, Jin Seok;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.74-74
    • /
    • 2017
  • Wheat is one of the world's most important crop species. Recently, abnormal climate changes directly influence on the significant reduction of wheat productivity in the world. This threaten allow breeders to find new genetic resources. Wheat is one of the widely grown crops in the world. Individual cultivars / germplasm is adapted in that region where the climate is unique to each other. Therefore, introducing new genetic resources which was good in one place may better perform in another region. In this study, we evaluated germplasm in Korean environment and measured numerous agro-morphological characteristics. Information that are provided by the National Agrobiodiversity Center (Jeonju, Korea) and National Plant Germplasm System (Aberdeen, USA) were included in the analysis. Cluster analysis was performed using the unweight pair-group method of averages. The results of PCA indicated principal discriminatory characteristics of wheat landraces and varieties. Significant differences indicated high variability among the quantitative traits. Cluster analysis results showed that the groups were divided by geological climate condition. The preliminary evaluation of germplasms in Korean environment would help to develop wheat cultivars via providing useful genetic traits that are resided in alien germplasms.

  • PDF

Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study

  • Kim, JongJoo;Farnir, Frederic
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1702-1705
    • /
    • 2006
  • A simulation study was conducted to evaluate a fine-mapping method exploiting population-wide linkage disequilibrium. Data were simulated according to the pedigree structure based on a large paternal half-sib family population with a total of 1,034 or 2,068 progeny. Twenty autosomes of 100 cM were generated with 5 cM or 1 cM marker intervals for all founder individuals in the pedigree, and marker alleles and a number of quantitative trait loci (QTL) explaining a total of 70% phenotypic variance were generated and randomly assigned across the whole chromosomes, assuming linkage equilibrium between the markers. The founder chromosomes were then descended through the pedigree to the current offspring generation, including recombinants that were generated by recombination between adjacent markers. Power to detect QTL was high for the QTL with at least moderate size, which was more pronounced with larger sample size and denser marker map. However, sample size contributed much more significantly to power to detect QTL than map density to the precise estimate of QTL position. No QTL was detected on the test chromosomes in which QTL was not assigned, which did not allow detection of false positive QTL. For the multiple QTL that were closely located, the estimates of the QTL positions were biased, except when the QTL were located on the right marker positions. Our fine mapping simulation results indicate that construction of dense maps and large sample size is needed to increase power to detect QTL and mapping precision for QTL position.

Mapping a Quantitative Trait Locus for Growth and Backfat on Porcine Chromosome 18

  • Wu, X.L.;Lee, C.;Jiang, J.;Peng, Y.L.;Yang, S.L.;Xiao, B.N.;Liu, X.C.;Shi, Q.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1665-1669
    • /
    • 2001
  • A QTL was localized near S0120 on porcine chromosome 18. The QTL was significant (p<0.05) for average daily gain (ADG) of body weight and backfat thickness (BFT). The estimates of additive and dominance effects for the QTL were 0.0135 kg/day (p<0.001) and 0.0138 kg/day (p>0.5) for ADG and 1.6115 mm (p<0.001) and 0.9281 mm (p>0.05) for BFT. The location of this QTL coincided with a few growth hormone pathway genes. This study suggested that a QTL allele probably resulted from a mutation responsible for physiological lipase deficiency favoring obesity. This QTL might be important to obesity as well as growth in pigs.

Evolutionary and Functional Analysis of Korean Native Pig Using Single Nucleotide Polymorphisms

  • Lee, Jongin;Park, Nayoung;Lee, Daehwan;Kim, Jaebum
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.728-738
    • /
    • 2020
  • Time and cost-effective production of next-generation sequencing data has enabled the performance of population-scale comparative and evolutionary studies for various species, which are essential for obtaining the comprehensive insight into molecular mechanisms underlying species- or breed-specific traits. In this study, the evolutionary and functional analysis of Korean native pig (KNP) was performed using single nucleotide polymorphism (SNP) data by comparative and population genomic approaches with six different mammalian species and five pig breeds. We examined the evolutionary history of KNP SNPs, and the specific genes of KNP based on the uniqueness of non-synonymous SNPs among the used species and pig breeds. We discovered the evolutionary trajectory of KNP SNPs within the used mammalian species as well as pig breeds. We also found olfaction-associated functions that have been characterized and diversified during evolution, and quantitative trait loci associated with the unique traits of KNP. Our study provides new insight into the evolution of KNP and serves as a good example for a better understanding of domestic animals in terms of evolution and domestication using the combined approaches of comparative and population genomics.

QTL Mapping for Major Agronomic Traits across Two Years in Soybean(Glycine max L. Merr.)

  • Li, Wenxin;Zheng, Da-Hao;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The agronomic traits, such as days to flowering and maturity, plant height, 100-seed weight and seed filling period, are quantitatively inherited and important characters in soybean(Glycine max L. Merr.). A total of 126 $F_5$ recombinant inbred lines(RILs) developed from the cross of PI 171451$\times$Hwaeomputkong were used to identify quantitative trait loci(QTLs) for days to flowering(FD), days to maturity(MD), plant height(PH), 100-seed weight(SW), number of branches(NB) and seed filling period(FP). A total of 136 simple sequence repeat(SSR) markers segregated in a RIL population were distributed over 20 linkage groups(LGs), covering 1073.9 cM of the soybean genome with the average distance between adjacent markers of 7.9 cM. Five independent QTLs were identified for FD, three for MD, two for PH, three for SW, one for NB and one for FP. Of these, three QTLs were related to more than two traits of FD, MD, PH, NB and FP and mapped near the same positions on LGs H and O. Thus, these traits could be correlated with biologically controlled major QTLs in this soybean RIL population.

  • PDF

Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

  • Vijayan, Kunjupillai;Singh, Ravindra Nath;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.37-43
    • /
    • 2010
  • The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called "eco-race" or "ecotypes". Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).

Phenotypic and Marker Assisted Evaluation of Korean Wheat Cultivars

  • Jung, Yeonju;Park, Chul Soo;Jeung, Ji-Ung;Kang, Chon-Sik;Lee, Gi-An;Choi, Yu-Mi;Lee, Jung-Ro;Lee, Myung-Chul;Kim, Chung-Kon;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.273-281
    • /
    • 2011
  • Fusarium head blight (FHB), also known as scab, caused mainly by Fusarium graminearum is a devastating disease of wheat in regions that are warm and humid during flowering. In addition to significant yield and quality losses, the mycotoxin deoxynivalenol produced by the pathogen in infected wheat kernels is a serious problem for food and feed safety. Twenty- three Korean cultivars and "Sumai 3", which is a FHB-resistant Chinese cultivar were tested for Type I, Type II resistances of FHB. Three cultivars were identified as resistant in Type I assessment, and two cultivars were resistant in Type II assessment. Genetic variation and relationship among the cultivars were evaluated on the basis of 11 Simple Sequence Repeat (SSR) and 29 Sequence Tagged Site (STS) markers that were linked to FHB resistance Quantitative Trait Loci (QTL) on chromosome 3BS. One SSR and 7 STS markers detected polymorphisms. Especially, using a STS marker (XSTS3B-57), 32.4% of the variation for Type II FHB resistance could be explained. Genetic relationship among Korean wheat cultivars was generally consistent with their released year. These markers on chromosome 3BS have the potential for accelerating the development of Korean wheat cultivars with improved Fusarium head blight resistance through the use of marker-assisted selection.

Inheritance Analysis of Giant Embryo Mutation Induced by T-DNA Insertion in Rice

  • Qin, Yang;Kim, Suk-Man;Park, Hee-Yeon;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Recently, giant embryonic rice and functional rice food are preferred by more consumers, which are attributed to the fact that the embryo has high concentrations of essential amino acids, fatty acids, and vitamins relative to other parts of rice grains. In this report, the heredity and stability of giant embryo mutations in successive generations were analyzed regarding a giant embryonic line, 'P47', induced by T-DNA insertion and a $F_2$ population from a cross between 'P47' and 'Junam'. The mutant lines with increases of 1.5, 1.7 and 1.8 times on embryo length, width and 100-embryo weight to those of the control showed stable inheritance across three generations. The continuous frequency distributions of embryo size in the $F_2$ population showed that the embryo size is a quantitative trait of polygene controlled. In addition, wide range of transgressive segregations of six traits affecting embryo size confirmed exchange of genetic materials and recombination between genes controlling embryo size. Five giant embryo mutant lines selected from the $F_2$ population will be used for artificial selection and improvement of giant embryonic varieties.

Improvement of Nitrogen Use Efficiency for Sustainable and Productive Agriculture (지속 가능한 농업생산성 증대를 위한 질소 이용 효율 향상)

  • Chang, Ancheol;Choi, Ji-Young;Park, Soon-Ki;Kim, Dong-Hern;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.349-359
    • /
    • 2011
  • Agriculture plays a vital role in the sustenance of human society and is the fundamental of developing economies. Nitrogen is one of the most critical inputs that define crop productivity. To ensure better value for investment as well as to minimize the adverse impacts of the accumulative nitrogen species in environment, improving nitrogen use efficiency of crop plants is of key importance. Efforts have been made to study the genetic and molecular biological basis as well as the biochemical mechanisms involved in nitrogen uptake, assimilation, translocation and remobilization in crops and model plants. This review gives an overview of metabolic, enzymatic, genetic and biotechnological aspects of nitrogen uptake, assimilation, remobilization and regulation. This review presents the complexity of nitrogen use efficiency and the need for an integrated approach combining physiology, quantitative trait genetics, system biology, soil science, ecophysiology and biotechnological interventions to improve nitrogen use efficiency.

Mapping of Quantitative Trait Loci for Yield and Grade Related Traits in Peanut (Arachis hypogaea L.) Using High-Resolution SNP Markers

  • Liang, Yuya;Baring, Michael R.;Septiningsih, Endang M.
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.454-462
    • /
    • 2018
  • Yield and grade are the key factors that affect production value of peanut. The objective of this study was to identify QTLs for pod yield, hundred-seed weight, and total sound mature kernel (TSMK). A total of 90 recombinant inbred lines, derived from Tamrun OL07 and a breeding line Tx964117, were used as a mapping population and planted in Brownfield and Stephenville, Texas. A genetic map was developed using 1,211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-seq). A total of 10 QTLs were identified above the permutation threshold, three for yield, three for hundred-seed weight and four for TSMK, with LOD score values of 3.7 - 6.9 and phenotypic variance explained of 12.2% - 35.9%. Among those, there were several QTLs that were detected in more than one field experiment. The commonly detected QTLs in this study may be used as potential targets for future breeding program to incorporate yield and grade related traits through molecular breeding.