DOI QR코드

DOI QR Code

Evolutionary and Functional Analysis of Korean Native Pig Using Single Nucleotide Polymorphisms

  • Lee, Jongin (Department of Biomedical Science and Engineering, Konkuk University) ;
  • Park, Nayoung (Department of Biomedical Science and Engineering, Konkuk University) ;
  • Lee, Daehwan (Department of Biomedical Science and Engineering, Konkuk University) ;
  • Kim, Jaebum (Department of Biomedical Science and Engineering, Konkuk University)
  • Received : 2020.02.05
  • Accepted : 2020.07.24
  • Published : 2020.08.31

Abstract

Time and cost-effective production of next-generation sequencing data has enabled the performance of population-scale comparative and evolutionary studies for various species, which are essential for obtaining the comprehensive insight into molecular mechanisms underlying species- or breed-specific traits. In this study, the evolutionary and functional analysis of Korean native pig (KNP) was performed using single nucleotide polymorphism (SNP) data by comparative and population genomic approaches with six different mammalian species and five pig breeds. We examined the evolutionary history of KNP SNPs, and the specific genes of KNP based on the uniqueness of non-synonymous SNPs among the used species and pig breeds. We discovered the evolutionary trajectory of KNP SNPs within the used mammalian species as well as pig breeds. We also found olfaction-associated functions that have been characterized and diversified during evolution, and quantitative trait loci associated with the unique traits of KNP. Our study provides new insight into the evolution of KNP and serves as a good example for a better understanding of domestic animals in terms of evolution and domestication using the combined approaches of comparative and population genomics.

Keywords

References

  1. Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., and Abecasis, G.R. (2015). A global reference for human genetic variation. Nature 526, 68-74. https://doi.org/10.1038/nature15393
  2. Capella-Gutierrez, S., Silla-Martinez, J.M., and Gabaldon, T. (2009). trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. https://doi.org/10.1093/bioinformatics/btp348
  3. Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., Bibi, F., Yang, Y., Wang, J., Nie, W., et al. (2019). Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202. https://doi.org/10.1126/science.aav6202
  4. Cho, I.C., Yoo, C.K., Lee, J.B., Jung, E.J., Han, S.H., Lee, S.S., Ko, M.S., Lim, H.T., and Park, H.B. (2015). Genome-wide QTL analysis of meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Genet. Sel. Evol. 47, 7. https://doi.org/10.1186/s12711-014-0080-6
  5. Choi, J.W., Chung, W.H., Lee, K.T., Cho, E.S., Lee, S.W., Choi, B.H., Lee, S.H., Lim, W., Lim, D., Lee, Y.G., et al. (2015). Whole-genome resequencing analyses of five pig breeds, including Korean wild and native, and three European origin breeds. DNA Res. 22, 259-267. https://doi.org/10.1093/dnares/dsv011
  6. Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92. https://doi.org/10.4161/fly.19695
  7. da Silva, E.C., de Jager, N., Burgos-Paz, W., Reverter, A., Perez-Enciso, M., and Roura, E. (2014). Characterization of the porcine nutrient and taste receptor gene repertoire in domestic and wild populations across the globe. BMC Genomics 15, 1057. https://doi.org/10.1186/1471-2164-15-1057
  8. Daetwyler, H.D., Capitan, A., Pausch, H., Stothard, P., van Binsbergen, R., Brondum, R.F., Liao, X., Djari, A., Rodriguez, S.C., Grohs, C., et al. (2014). Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858-865. https://doi.org/10.1038/ng.3034
  9. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioinformatics 27, 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
  10. Davoli, R. and Braglia, S. (2007). Molecular approaches in pig breeding to improve meat quality. Brief. Funct. Genomic. Proteomic. 6, 313-321. https://doi.org/10.1093/bfgp/elm036
  11. de Koning, D.J., Pong-Wong, R., Varona, L., Evans, G.J., Giuffra, E., Sanchez, A., Plastow, G., Noguera, J.L., Andersson, L., and Haley, C.S. (2003). Full pedigree quantitative trait locus analysis in commercial pigs using variance components. J. Anim. Sci. 81, 2155-2163. https://doi.org/10.2527/2003.8192155x
  12. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491-498. https://doi.org/10.1038/ng.806
  13. Edea, Z. and Kim, K.S. (2014). A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds. J. Anim. Sci. Technol. 56, 23. https://doi.org/10.1186/2055-0391-56-23
  14. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. https://doi.org/10.1093/nar/gkh340
  15. Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., et al. (2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649-D655. https://doi.org/10.1093/nar/gkx1132
  16. Falker-Gieske, C., Blaj, I., Preu$\ss$, S., Bennewitz, J., Thaller, G., and Tetens, J. (2019). GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3 (Bethesda) 9, 2823-2834. https://doi.org/10.1534/g3.119.400452
  17. Farris, J.S. (1970). Methods for computing Wagner trees. Syst. Zool. 19, 83-92. https://doi.org/10.2307/2412028
  18. Fitch, W.M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416. https://doi.org/10.2307/2412116
  19. Giuffra, E., Kijas, J.M., Amarger, V., Carlborg, O., Jeon, J.T., and Andersson, L. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785-1791. https://doi.org/10.1093/genetics/154.4.1785
  20. Gordon, L., Yang, S., Tran-Gyamfi, M., Baggott, D., Christensen, M., Hamilton, A., Crooijmans, R., Groenen, M., Lucas, S., Ovcharenko, I., et al. (2007). Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Res. 17, 1603-1613. https://doi.org/10.1101/gr.6775107
  21. Grindflek, E., Szyda, J., Liu, Z., and Lien, S. (2001). Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome 12, 299-304. https://doi.org/10.1007/s003350010278
  22. Groenen, M.A., Archibald, A.L., Uenishi, H., Tuggle, C.K., Takeuchi, Y., Rothschild, M.F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H.J., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393-398. https://doi.org/10.1038/nature11622
  23. Haeussler, M., Zweig, A.S., Tyner, C., Speir, M.L., Rosenbloom, K.R., Raney, B.J., Lee, C.M., Lee, B.T., Hinrichs, A.S., Gonzalez, J.N., et al. (2019). The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 47, D853-D858. https://doi.org/10.1093/nar/gky1095
  24. Harris, R.S. (2007). Improved pairwise alignment of genomic DNA. Ph.D. thesis in Computer Science and Engineering (State College: The Pennsylvania State University).
  25. Hocquette, J.F., Gondret, F., Baeza, E., Medale, F., Jurie, C., and Pethick, D.W. (2010). Intramuscular fat content in meat-producing animals:development, genetic and nutritional control, and identification of putative markers. Animal 4, 303-319. https://doi.org/10.1017/S1751731109991091
  26. Horodyska, J., Wimmers, K., Reyer, H., Trakooljul, N., Mullen, A.M., Lawlor, P.G., and Hamill, R.M. (2018). RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 19, 791. https://doi.org/10.1186/s12864-018-5175-y
  27. Hu, Z.L., Park, C.A., and Reecy, J.M. (2019). Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 47, D701-D710. https://doi.org/10.1093/nar/gky1084
  28. Karst, S., Cheng, R., Schmitt, A.O., Yang, H., de Villena, F.P., Palmer, A.A., and Brockmann, G.A. (2011). Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mamm. Genome 22, 530-543. https://doi.org/10.1007/s00335-011-9342-6
  29. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-D595. https://doi.org/10.1093/nar/gky962
  30. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996-1006. https://doi.org/10.1101/gr.229102
  31. Kim, H., Song, K.D., Kim, H.J., Park, W., Kim, J., Lee, T., Shin, D.H., Kwak, W., Kwon, Y.J., Sung, S., et al. (2015). Exploring the genetic signature of body size in Yucatan miniature pig. PLoS One 10, e0121732. https://doi.org/10.1371/journal.pone.0121732
  32. Kim, K.S. and Choi, C.B. (2002). Genetic structure of Korean native pig using microsatellite markers. Korean J. Genet. 24, 1-7.
  33. Kinsella, R.J., Kahari, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., Staines, D., Derwent, P., Kerhornou, A., et al. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030. https://doi.org/10.1093/database/bar030
  34. Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B. (2017). TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819. https://doi.org/10.1093/molbev/msx116
  35. Kwon, D., Lee, D., Kim, J., Lee, J., Sim, M., and Kim, J. (2018). INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species. Nucleic Acids Res. 46, W89-W94. https://doi.org/10.1093/nar/gky378
  36. Lee, D., Cho, M., Hong, W.Y., Lim, D., Kim, H.C., Cho, Y.M., Jeong, J.Y., Choi, B.H., Ko, Y., and Kim, J. (2016). Evolutionary analyses of Hanwoo (Korean cattle)-specific single-nucleotide polymorphisms and genes using wholegenome resequencing data of a Hanwoo population. Mol. Cells 39, 692-698. https://doi.org/10.14348/molcells.2016.0148
  37. Lee, D., Lim, D., Kwon, D., Kim, J., Lee, J., Sim, M., Choi, B.H., Choi, S.G., and Kim, J. (2017). Functional and evolutionary analysis of Korean bob-tailed native dog using whole-genome sequencing data. Sci. Rep. 7, 17303. https://doi.org/10.1038/s41598-017-17817-w
  38. Lee, K.T., Lee, Y.M., Alam, M., Choi, B.H., Park, M.R., Kim, K.S., Kim, T.H., and Kim, J.J. (2012a). A whole genome association study on meat quality traits using high density SNP chips in a cross between Korean native pig and Landrace. Asian-Australas. J. Anim. Sci. 25, 1529-1539. https://doi.org/10.5713/ajas.2012.12474
  39. Lee, T.H., Guo, H., Wang, X., Kim, C., and Paterson, A.H. (2014). SNPhylo:a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162. https://doi.org/10.1186/1471-2164-15-162
  40. Lee, Y.M., Alam, M., Choi, B.H., Kim, K.S., and Kim, J.J. (2012b). A whole genome association study to detect single nucleotide polymorphisms for blood components (immunity) in a cross between Korean native pig and Yorkshire. Asian-Australas. J. Anim. Sci. 25, 1674-1680. https://doi.org/10.5713/ajas.2012.12503
  41. Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993. https://doi.org/10.1093/bioinformatics/btr509
  42. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, https://arxiv.org/abs/1303.3997v2
  43. Li, M., Chen, L., Tian, S., Lin, Y., Tang, Q., Zhou, X., Li, D., Yeung, C.K.L., Che, T., Jin, L., et al. (2017). Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 27, 865-874. https://doi.org/10.1101/gr.207456.116
  44. Naval-Sanchez, M., Nguyen, Q., McWilliam, S., Porto-Neto, L.R., Tellam, R., Vuocolo, T., Reverter, A., Perez-Enciso, M., Brauning, R., Clarke, S., et al. (2018). Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 9, 859. https://doi.org/10.1038/s41467-017-02809-1
  45. Nguyen, D.T., Lee, K., Choi, H., Choi, M.K., Le, M.T., Song, N., Kim, J.H., Seo, H.G., Oh, J.W., Lee, K., et al. (2012). The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics 13, 584. https://doi.org/10.1186/1471-2164-13-584
  46. O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733-D745. https://doi.org/10.1093/nar/gkv1189
  47. Paszek, A.A., Wilkie, P.J., Flickinger, G.H., Miller, L.M., Louis, C.F., Rohrer, G.A., Alexander, L.J., Beattie, C.W., and Schook, L.B. (2001). Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim. Biotechnol. 12, 155-165. https://doi.org/10.1081/ABIO-100108342
  48. Raney, B.J., Dreszer, T.R., Barber, G.P., Clawson, H., Fujita, P.A., Wang, T., Nguyen, N., Paten, B., Zweig, A.S., Karolchik, D., et al. (2014). Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30, 1003-1005. https://doi.org/10.1093/bioinformatics/btt637
  49. Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H., and Vilo, J. (2016). g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83-W89. https://doi.org/10.1093/nar/gkw199
  50. Sachs, D.H. and Galli, C. (2009). Genetic manipulation in pigs. Curr. Opin. Organ Transplant. 14, 148-153. https://doi.org/10.1097/MOT.0b013e3283292549
  51. Sanchez, M.P., Iannuccelli, N., Basso, B., Bidanel, J.P., Billon, Y., Gandemer, G., Gilbert, H., Larzul, C., Legault, C., Riquet, J., et al. (2007). Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x Large White cross. BMC Genet. 8, 55. https://doi.org/10.1186/1471-2156-8-55
  52. Sang, Y., Bergkamp, J., and Blecha, F. (2014). Molecular evolution of the porcine type I interferon family: subtype-specific expression and antiviral activity. PLoS One 9, e112378. https://doi.org/10.1371/journal.pone.0112378
  53. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M., and Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308-311. https://doi.org/10.1093/nar/29.1.308
  54. Turnbull, C., Scott, R.H., Thomas, E., Jones, L., Murugaesu, N., Pretty, F.B., Halai, D., Baple, E., Craig, C., Hamblin, A., et al. (2018). The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ 361, k1687.
  55. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013). From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1-11.10.33.
  56. Vieira, F.G. and Rozas, J. (2011). Comparative genomics of the odorantbinding and chemosensory protein gene families across the Arthropoda:origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476-490. https://doi.org/10.1093/gbe/evr033
  57. Vincent, A., Louveau, I., Gondret, F., Lebret, B., and Damon, M. (2012). Mitochondrial function, fatty acid metabolism, and immune system are relevant features of pig adipose tissue development. Physiol. Genomics 44, 1116-1124. https://doi.org/10.1152/physiolgenomics.00098.2012
  58. Wang, J., Yan, X.L., Liu, R., Fu, Q.Q., Zhou, G.H., and Zhang, W.G. (2016). Differences in calpain system, desmin degradation and water holding capacity between commercial Meishan and Duroc ${\times}$ Landrace ${\times}$ Yorkshire crossbred pork. Anim. Sci. J. 87, 109-116. https://doi.org/10.1111/asj.12394
  59. Watanabe, G., Motoyama, M., Nakajima, I., and Sasaki, K. (2018). Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Australas. J. Anim. Sci. 31, 914-918. https://doi.org/10.5713/ajas.17.0640
  60. Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555-556.
  61. Zerbino, D.R., Achuthan, P., Akanni, W., Amode, M.R., Barrell, D., Bhai, J., Billis, K., Cummins, C., Gall, A., Giron, C.G., et al. (2018). Ensembl 2018. Nucleic Acids Res. 46, D754-D761. https://doi.org/10.1093/nar/gkx1098
  62. Zhu, Y., Li, W., Yang, B., Zhang, Z., Ai, H., Ren, J., and Huang, L. (2017). Signatures of selection and interspecies introgression in the genome of Chinese domestic pigs. Genome Biol. Evol. 9, 2592-2603. https://doi.org/10.1093/gbe/evx186