• Title/Summary/Keyword: Quantitative Precipitation Estimation

Search Result 54, Processing Time 0.039 seconds

Deduction of Data Quality Control Strategy for High Density Rain Gauge Network in Seoul Area (서울시 고밀도 지상강우자료 품질관리방안 도출)

  • Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.245-255
    • /
    • 2015
  • This study used high density network of integrated meteorological sensor, which are operated by SK Planet, with KMA weather stations to estimate the quantitative precipitation field in Seoul area. We introduced SK Planet network and analyzed quality of the observed data for 3 months data from 1 July to 30 September 2013. As the quality analysis result, we checked most SK Planet stations observed similar with previous KMA stations. We developed the real-time quality check and adjustment method to reduce the error effect for hydrological application by missing and outlier value and we confirmed the developed method can be corrected the missing and outlier value. Through this method, we used the 190 stations(KMA 34 stations, SK Planet 156 stations) that missing ratio is less than 20% and the effect of the outlier was the smallest for quantitative precipitation estimation. Moreover, we evaluated reproducibility of rainfall field high density rain gauge network has $3km^2$/gauge. As the result, the spatial relative frequency of rainfall field using SK Planet and KMA stations is similar with radar rainfall field. And, it supplement the blank of KMA observation network. Especially, through this research we will take advantage of the density of the network to estimate rainfall field which can be considered as a very good approximation of the true value.

Optimization of Z-R relationship in the summer of 2014 using a micro genetic algorithm (마이크로 유전알고리즘을 이용한 2014년 여름철 Z-R 관계식 최적화)

  • Lee, Yong Hee;Nam, Ji-Eun;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The Korea Meteorological Administration has operated the Automatic Weather Stations, of the average 13 km horizontal resolution, to observe rainfall. However, an additional RADAR network also has been operated in all-weather conditions, because AWS network could not observed rainfall over the sea. In general, the rain rate is obtained by estimating the relationship between the radar reflectivity (Z) and the rainfall (R). But this empirical relationship needs to be optimized on the rainfall over the Korean peninsula. This study was carried out to optimize the Z-R relationship in the summer of 2014 using a parallel Micro Genetic Algorithm. The optimized Z-R relationship, $Z=120R^{1.56}$, using a micro genetic algorithm was different from the various Z-R relationships that have been previously used. However, the landscape of the fitness function found in this study looked like a flat plateau. So there was a limit to the fine estimation including the complex development and decay processes of precipitation between the ground and an altitude of 1.5km.

Generation of radar rainfall ensemble using probabilistic approach (확률론적 방법론을 이용한 레이더 강우 앙상블 생성)

  • Kang, Narae;Joo, Hongjun;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.155-167
    • /
    • 2017
  • Accurate QPE (Quantitative Precipitation Estimation) and the quality of the rainfall data for hydrological analysis are very important factors. Especially, the quality has a great influence on flood runoff result. It needs to know characteristics of the uncertainties in radar QPE for the reliable flood analysis. The purpose of this study is to present a probabilistic approach which defines the range of possible values or probabilistic distributions rather than a single value to consider the uncertainties in radar QPE and evaluate its applicability by applying it to radar rainfall. This study generated radar rainfall ensemble for the storms by the typhoon 'Sanba' on Namgang dam basin, Korea. It was shown that the rainfall ensemble is able to simulate well the pattern of the rain-gauge rainfall as well as to correct well the overall bias of the radar rainfall. The suggested ensemble technique represented well the uncertainties of radar QPE. As a result, the rainfall ensemble model by a probabilistic approach can provide various rainfall scenarios which is a useful information for a decision making such as flood forecasting and warning.

Using Extended Kalman Filter for Real-time Decision of Parameters of Z-R Relationship (확장 칼만 필터를 활용한 Z-R 관계식의 매개변수 실시간 결정)

  • Kim, Jungho;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.119-133
    • /
    • 2014
  • The study adopted extended Kalman filter technique in an effort to predict Z-R relationship parameter as a stable value in real-time. Toward this end, a parameter estimation model was established based on extended Kalman filter in consideration of non-linearity of Z-R relationship. A state-space model was established based on a study that was conducted by Adamowski and Muir (1989). Two parameters of Z-R relationship were set as state variables of the state-space model. As a result, a stable model where a divergence of Kalman gain and state variables are not generated was established. It is noteworthy that overestimated or underestimated parameters based on a conventional method were filtered and removed. As application of inappropriate parameters might cause physically unrealistic rain rate estimation, it can be more effective in terms of quantitative precipitation estimation. As a result of estimation on radar rainfall based on parameters predicted with the extended Kalman filter, the mean field bias correction factor turned out to be around 1.0 indicating that there was a minor difference from the gauge rain rate without the mean field bias correction. In addition, it turned out that it was possible to conduct more accurate estimation on radar rainfall compared to the conventional method.

The Establishment and Application of Very Short Range Forecast of Precipitation System (초단시간 강수예보시스템 구축 및 활용)

  • Choi, Ji-Hye;Nam, Kyung-Yeub;Suk, Mi-Kyung;Choi, Byoung-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1515-1519
    • /
    • 2006
  • 본 연구에서는 초단시간 강수예보(VSRF, Very Short-Range Forecast of precipitation) 시스템 구축 현황을 소개하고자 한다. VSRF 모델은 레이더 반사도 자료와 지상 AWS 자료를 이용하여 레이더-AWS 강우강도를 산출하는 강수분석과정과 분석된 강수량 자료와 중규모 수치예보장을 사용하여 외삽법에 의한 초단시간 강수예보를 수행하는 예보과정, 실시간으로 산출된 강수예보 자료를 검증하고 홈페이지에 제공하는 자료지원과정으로 구성된다. 본 연구에서는 모델의 예보능력을 향상시키기 위해 크게 두 가지 측면에서 모델을 개선하였다. 첫째는 모델의 입력자료인 레이더-AWS 강우강도 자료를 기상연구소 원격탐사연구실에서 운영하던 WPMM (Window Probability Matching Method)과 기상청 기상레이더과에서 운영하던 RQPE(Radar Quantitative Precipitation Estimation)의 알고리즘을 통합하여 정확한 강우강도 자료인 레이더-AWS 강우강도(RAR, Radar-AWS Rain rate) 시스템을 구축하여 개선하였으며, 둘째는 외삽과정을 통한 예보가 3시간이 지나면 예측능력이 감소하는 문제점을 보완하기 위해 현업 중규모 모델(RDAPS, Regional Data Assimilation and Prediction System)의 예측강수와 병합하여 모델을 개선하였다. 또한 이를 시계열 검증 및 공간 검증하는 실시간 검증 시스템을 구축하여 실시간으로 모델의 정확성을 평가하고 있다. 그 결과 입력자료 개선을 통한 모델의 정확도는 크게 향상된 결과는 볼 수 없었지만 미약하게 향상된 것을 확인할 수 있었으며, 모델의 병합을 통한 모델의 개선은 예측 3시간 이후부터는 50% 정도 향상되었다.의 대안을 제시하고자 한다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에

  • PDF

Estimation on the Regions of Freshwater Influence using the Seasonal Salinity Data in Asan Bay Coastal Zone (계절별 염분 자료를 이용한 아산만 연안의 담수 영향범위 추정)

  • Cho, Hong-Yeon;Cho, Beom-Jun;Kim, Sang-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.219-231
    • /
    • 2008
  • This study analyzes a general pattern of the gate operation at the Asan bay seadikes and its effects on salinity. The coefficient of determination between precipitation and released freshwater from gate operation turns out to be 0.77-0.89. A stratification is not shown in the analysis of the salinity in upper and lower layers at the Asan bay because of strong tidal effects, and the coefficient of determination between runoff and salinity is in the range of 0.49-0.62 except station Daesan 4. Salinity observations from 8 stations show mean and standard deviation are highly correlated (coefficient of determination=0.9936), and both mean and standard deviation are influenced by freshwater. Eventually it is found that stations Asan 2 to 4 and Daesan 1 are within the regions of the freshwater influences.

A Study on the Improvement of Quantitative Precipitation Estimation with Real-time Z-R Relationships (실시간 Z-R관계식을 이용한 레이더 강우산정기법의 문제점 개선에 관한 연구)

  • Kim, Gwang-Seob;Kim, Jong-Pil;Yim, Tae-Kyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1121-1124
    • /
    • 2009
  • 면적강우량은 수치예보모형(NWP; Numerical Weather Prediction)이나 분포형 강우유출모형 등에서 가장 중요한 입력변수이다. 기상레이더는 광범위한 시공간분해능을 지닌 강우관측기기로서 널리 이용되고 있다. 레이더 반사도 자료를 이용한 강우추정에 대한 연구는 Z-R 관계식을 이용한 방법, 지상우량계와 연계한 통계적인 방법 등 다양하게 전개되어 왔다. 일반적으로 많이 사용되는 Marshall and Palmer(1948)가 제시한 Z-R 관계식은 층운형 강우에는 비교적 타당한 결과를 얻을 수 있지만 적운형 강우에 대해서는 그러하지 못하다. 또한 지상우량계와 연계한 방법은 주로 geostatistic 기법(ordinary kriging, co-kringing, kriging with external drift 등)을 사용하지만, 배리오그램(variogram)을 작성해야 되는 등 계산절차가 복잡하고 시간이 많이 걸려 실무에 적용하여 실시간으로 강우정보를 제공하기에는 다소 무리가 따른다. 따라서 본 연구에서는 지상우량계로 관측된 강우량과 레이더 추정강우 사이의 보정계수를 이용한 실시간 Z-R 관계식으로 레이더강우를 추정할 경우 발생될 수 있는 문제점들을 제시하고 개선방안을 모색하여 보다 정확한 레이더 강우를 추정하고자 하였다. 연구 대상지역은 부산레이더 반경 240km 이내 지역이며, 강우사상으로는 2002년 8월 31일 (태풍 "루사")의 레이더 반사도 자료를 이용하였다. 또한, 지상관측 강우량자료는 AWS(Auto Weathering System) 중에서 부산레이더 관측범위 내에 존재하는 68곳의 1시간 누적강우량을 사용하였다. 연구 결과, 기존의 실시간 Z-R 관계식을 이용할 경우 단순히 지상우량계와 레이더 강우 사이의 보정계수를 사용하면서 물리적인 범위를 벗어나 과대 추정되는 결과를 발생시켰다. 본 연구에서는 이렇게 과대 추정되는 부분을 제한함으로써 보다 현실적이고 타당한 면적강우량을 산정할 수 있었다.

  • PDF

A study of quantitative precipitation estimation method using advanced machine learning algorithms. (기계학습을 이용한 레이더 강우추정 기법 연구)

  • Shin, Ju-Young;Ro, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.58-58
    • /
    • 2019
  • 최근 기계학습기법에 대한 활발한 연구로 인하여 많은 기계학습기법들이 개발되었다. 이러한 최신기계학습기법은 기존에 사용되어온 기계학습기법과 경험식들보다 자연현상을 예측하고 재현하는데 높은 성능을 보이는 것으로 알려져 있다. 레이더 자료를 이용한 강우추정 기법으로는 ZR관계식이 널리 사용되고 있다. 이상적인 조건에서는 ZR 관계식을 이용한 레이더 강우추정이 양호한 성능을 보이나, 실제 레이더 자료를 이용한 강우추정은 이상적인 환경이 아닌 경우가 매우 많다. 이런 ZR관계식의 한계점을 보완하기 위한 방법으로 기계학습기법을 이용한 레이더 강우추정 기법들이 개발되었으나, 현재 한국의 레이더 자료를 대상으로 해서는 많은 연구가 진행되어 오지 않고 있다. 레이더 자료를 이용한 강우추정의 정확도 향상을 위해서는 최신 기계학습기법들의 레이더 강우추정 기법에 대한 적용가능성을 평가해 볼 필요성이 있다. 본 연구에서는 random forest, stochastic gradient boosted model, extreme learning machine의 강우 레이더 강우추정 기법으로의 적용성을 평가하였다. 강우추정 기법 개발 및 성능 비교를 위해서 2018년 광덕산 이중편파 레이더 자료를 이용하였다. 다양한 이중편파 매개변수 조합을 레이더 강우추정 기법의 입력변수로 적용하였다. 기존 연구의 사용되어 온 ZR관계식의 매개변수를 또한 강우사상과 이중편파 매개변수 조합을 이용하여 추정하였다. 기계학습을 적용한 레이더 강우추정 기법이 ZR관계식보다 상관계수와 제곱근오차를 기준으로 높은 강우추정 정확도를 보였다. 특히 개발된 강우추정 기법은 호우사상에서 높은 정확도를 보이는 것을 확인 할 수 있었다. 적용된 기계학습 기법 중에서는extreme learning machine이 레이더 강우추정기법 개발에 가장 적합한 것으로 나타났다.

  • PDF

Estimation of Quantitative Daily Precipitation Forecasting for Integrated Real-time Basin Water Management System (실시간 물관리를 위한 정량적 강수예측기법에 관한 연구)

  • Oh, Jai-Ho;Kim, Jin-Young;Kang, Bu-Sick;Jeong, Chang-Sam;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1488-1491
    • /
    • 2006
  • 본 연구에서는 실시간 통합 물관리 시스템의 일환으로 월별 일강수량 예측 시스템에 관한 연구를 실시하였다. 선행시간 2일 예측에 대해서는 기상청 생성 수치모의 RDAPS (Regional Data Assimilation and Prediction System)를 기반으로 강수진단모형인 QPM (Quantitative Precipitatiom Model)을 이용하여 지형효과를 보정하였으며, 선행시간 2일에서 8일까지의 예측에 대해서는 GDAPS (Global Data Assimilation and Prediction System) 모의결과를 QPM을 이용하여 보정하였고, 선행시간 10일 이후의 예측값은 통계적 기법을 이용한 자료를 활용하였다. 통계적 기법으로는 과거 20년간의 관측된 강수경향을 이용하여 시스템을 구축하였다. 강수진단모형 (QPM)은 Misumi et al. (2001), Bell (1978), Collier (1975)등이 제안한 바 있는 Collier-type의 모형으로서 이들 모형은 소규모 지형 효과를 고려한 강수량을 산출하는 진단 모형이다. QPM은 중규모 예측 모형으로부터 계산된 수평 바람, 고도, 기온, 강우 강도, 그리고 상대습도 등의 예측 자료를 이용하고, 중규모 예측 모형에서는 잘 표현되지 않는 소규모 지형 효과를 고려함으로써 중규모 예측 모형에서 생산된 상대적으로 성긴 격자의 강수량 예측 값을 상세 지역의 지형을 고려한 강수량 예측 값으로 재구성하게 된다. QPM은 중규모 모형으로부터 나온 자료를 초기 자료로 이용하고 3 km 간격의 상세 지형을 반영하는 모형으로 소규모 지형 효과를 표현함으로써 상세 지역에서의 강수량 산출과 지형에 따른 강수량의 분포 파악이 용이할 뿐 아니라, 계산 효율성을 개선시킬 수 있다.착능이 높은 것으로 사료되었다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주

  • PDF

A study on spatial error occurrence characteristics of precipitation estimation of rainfall radar (강우레이더 강수량 관측의 공간적 오차 발생 특성 연구)

  • Hwang, Seokhwana;Yoon, Jung Soo;Kang, Narae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1105-1114
    • /
    • 2022
  • A study on a method to overcome the limitations of the topographical and hydrological observation environment for estimating the QPE with high consistency with the ground rainfall by utilizing the spatiotemporal observation advantages of the rainfall radar for use in flood forecasting, and quantitative observations of localized rainfall due to these limiting conditions Uncertainty should be identified in terms of flood analysis. Against this background, in this study, 22 major heavy rain events in 2016 were analyzed for each of Mt. Biseul (BSL), Mt. Sobaek (SBS), Mt. Gari (GRS), Mt. Mohu (MHS), and Mt. Seodae (SDS) to determine the observation distance and altitude. The uncertainty of observation was quantified and an error map was derived. As a result of the analysis, it was found that, on average, the rainfall radar exceeded 10% up to 100 km and 30% over 150 km. Based on the average radar operating altitude angle, it was found that the error for the altitude was approximately 10% or less up to the second altitude angle, 20% at the third or higher altitude angle, and more than 50% at the fourth altitude angle or higher.