• 제목/요약/키워드: Quantile vector

검색결과 34건 처리시간 0.019초

Support vector quantile regression ensemble with bagging

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권3호
    • /
    • pp.677-684
    • /
    • 2014
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. To improve the estimation performance of SVQR we propose to use SVQR ensemble with bagging (bootstrap aggregating), in which SVQRs are trained independently using the training data sets sampled randomly via a bootstrap method. Then, they are aggregated to obtain the estimator of the quantile regression function using the penalized objective function composed of check functions. Experimental results are then presented, which illustrate the performance of SVQR ensemble with bagging.

일반화 서포트벡터 분위수회귀에 대한 연구 (Generalized Support Vector Quantile Regression)

  • 이동주;최수진
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.

Vector at Risk와 대안적인 VaR (Vector at Risk and alternative Value at Risk)

  • 홍종선;한수정;이기쁨
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.689-697
    • /
    • 2016
  • 금융시장 위험관리 수단으로 많이 사용하는 기법 중의 하나는 Morgan이 제안한 최대손실금액을 추정하는 VaR (Value at Risk)이다. VaR은 한 산업의 금융위험 측정도구로 사용되어지지만 실제 생활에서는 여러 회사 또는 국내 전체의 산업의 VaR를 추정하는 경우가 많다. 따라서 투자할 여러 산업에 대하여 특정한 포트폴리오가 설정된 경우에 다변량분포에 대한 VaR를 추정하는 문제가 필요하다. 본 연구에서는 다변량분포에 대한 VaR를 추정하기 위하여, 다차원 분위 벡터를 제안하고, 이를 바탕으로 다차원 공간에서의 Vector at Risk를 정의한다. 다변량분포에 대하여 특정한 포트폴리오가 설정된 경우에, Vector at Risk 중에서의 한 점을 가장 적절한 VaR로 설정하는 방법을 제안한다. 이를 대안적인 VaR이라고 정의하고, 다변량 분포에 대한 이 방법에 대하여 토론한다. 2변량과 3변량의 예제를 통해 본 연구의 대안적인 VaR과 Morgan의 VaR를 각각 구하고, 비교 설명하면서 대안적인 VaR의 특징을 탐색한다.

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

서포트벡터기계를 이용한 VaR 모형의 결합 (Combination of Value-at-Risk Models with Support Vector Machine)

  • 김용태;심주용;이장택;황창하
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.791-801
    • /
    • 2009
  • VaR(Value-at-Risk)는 시장위험을 측정하기 위한 중요한 도구로 사용되고 있다. 그러나 적절한 VaR 모형의 선택에는 논란의 여지가 많다. 본 논문에서는 특정 모형을 선택하여 VaR 예측값을 구하는 대신 대표적으로 많이 사용되는 두개의 VaR 모형인 역사적 모의실험과 GARCH 모형의 예측값들을 서포트벡터기계 분위수 회귀모형을 이용하여 결합하는 방법을 제안한다.

소지역 추정을 위한 M-분위수 커널회귀 (M-quantile kernel regression for small area estimation)

  • 심주용;황창하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.749-756
    • /
    • 2012
  • 소지역 추정을 위해 널리 사용되고 있는 방법 중 하나는 선형혼합효과모형이다. 그러나 종속변수와 독립변수 사이의 관계가 비선형일 때 이 모형은 소지역 관련 모수에 대해 편의된 추정값을 초래한다. 본 논문에서는 M-분위수 커널회귀를 사용하여 소지역의 평균을 추정하는 방법을 제안한다. 그리고 모의실험을 통하여 서포트벡터분위수회귀와 성능을 비교함으로써 제안된 방법의 우수성을 보인다.

Quantile Dependence between Foreign Exchange Market and Stock Market: The Case of Korea

  • Han, Heejoon;Lee, Na Kyeong
    • East Asian Economic Review
    • /
    • 제20권4호
    • /
    • pp.519-544
    • /
    • 2016
  • This paper examines quantile dependence and directional predictability between the foreign exchange market and the stock market in Korea. Instead of adopting a multivariate model such as a vector autoregressive model, a multivariate GARCH model or a combination of both models, we apply the cross-quantilogram recently proposed by Han et al. (2016). Considering various quantile ranges, we investigate various spillover effects between two markets. Our findings show that there exists an asymmetric bi-directional spillover between two markets and the interdependence between two markets implies that one market has significant predictive power on the other.