• 제목/요약/키워드: Quantile vector

검색결과 34건 처리시간 0.017초

Restricted support vector quantile regression without crossing

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1319-1325
    • /
    • 2010
  • Quantile regression provides a more complete statistical analysis of the stochastic relationships among random variables. Sometimes quantile functions estimated at different orders can cross each other. We propose a new non-crossing quantile regression method applying support vector median regression to restricted regression quantile, restricted support vector quantile regression. The proposed method provides a satisfying solution to estimating non-crossing quantile functions when multiple quantiles for high dimensional data are needed. We also present the model selection method that employs cross validation techniques for choosing the parameters which aect the performance of the proposed method. One real example and a simulated example are provided to show the usefulness of the proposed method.

Semisupervised support vector quantile regression

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.517-524
    • /
    • 2015
  • Unlabeled examples are easier and less expensive to be obtained than labeled examples. In this paper semisupervised approach is used to utilize such examples in an effort to enhance the predictive performance of nonlinear quantile regression problems. We propose a semisupervised quantile regression method named semisupervised support vector quantile regression, which is based on support vector machine. A generalized approximate cross validation method is used to choose the hyper-parameters that affect the performance of estimator. The experimental results confirm the successful performance of the proposed S2SVQR.

Iterative Support Vector Quantile Regression for Censored Data

  • Shim, Joo-Yong;Hong, Dug-Hun;Kim, Dal-Ho;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.195-203
    • /
    • 2007
  • In this paper we propose support vector quantile regression (SVQR) for randomly right censored data. The proposed procedure basically utilizes iterative method based on the empirical distribution functions of the censored times and the sample quantiles of the observed variables, and applies support vector regression for the estimation of the quantile function. Experimental results we then presented to indicate the performance of the proposed procedure.

Quantile confidence region using highest density

  • Hong, Chong Sun;Yoo, Myung Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제26권1호
    • /
    • pp.35-46
    • /
    • 2019
  • Multivariate Confidence Region (MCR) cannot be used to obtain the confidence region of the mean vector of multivariate data when the normality assumption is not satisfied; however, the Quantile Confidence Region (QCR) could be used with a Multivariate Quantile Vector in these cases. The coverage rate of the QCR is better than MCR; however, it has a disadvantage because the QCR has a wide shape when the probability density function follows a bimodal form. In this study, we propose a Quantile Confidence Region using the Highest density (QCRHD) method with the Highest Density Region (HDR). The coverage rate of QCRHD was superior to MCR, but is found to be similar to QCR. The QCRHD is constructed as one region similar to QCR when the distance of the mean vector is close. When the distance of the mean vector is far, the QCR has one wide region, but the QCRHD has two smaller regions. Based on these features, it is found that the QCRHD can overcome the disadvantages of the QCR, which may have a wide shape.

Support vector quantile regression for autoregressive data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1539-1547
    • /
    • 2014
  • In this paper we apply the autoregressive process to the nonlinear quantile regression in order to infer nonlinear quantile regression models for the autocorrelated data. We propose a kernel method for the autoregressive data which estimates the nonlinear quantile regression function by kernel machines. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of quantile regression function in the presence of autocorrelation between data.

Regression Quantile Estimations on Censored Survival Data

  • 심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.31-38
    • /
    • 2002
  • In the case of multiple survival times which might be censored at each covariate vector, we study the regression quantile estimations in this paper. The estimations are based on the empirical distribution functions of the censored times and the sample quantiles of the observed survival times at each covariate vector and the weighted least square method is applied for the estimation of the regression quantile. The estimators are shown to be asymptotically normally distributed under some regularity conditions.

  • PDF

Partially linear support vector orthogonal quantile regression with measurement errors

  • Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.209-216
    • /
    • 2015
  • Quantile regression models with covariate measurement errors have received a great deal of attention in both the theoretical and the applied statistical literature. A lot of effort has been devoted to develop effective estimation methods for such quantile regression models. In this paper we propose the partially linear support vector orthogonal quantile regression model in the presence of covariate measurement errors. We also provide a generalized approximate cross-validation method for choosing the hyperparameters and the ratios of the error variances which affect the performance of the proposed model. The proposed model is evaluated through simulations.

Support vector quantile regression for longitudinal data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.309-316
    • /
    • 2010
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

Support Vector Quantile Regression Using Asymmetric e-Insensitive Loss Function

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha;Cho, Dae-Hyeon
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.165-170
    • /
    • 2011
  • Support vector quantile regression(SVQR) is capable of providing a good description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse SVQR to overcome a limitation of SVQR, nonsparsity. The asymmetric e-insensitive loss function is used to efficiently provide sparsity. The experimental results are presented to illustrate the performance of the proposed method by comparing it with nonsparse SVQR.

Expected shortfall estimation using kernel machines

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.625-636
    • /
    • 2013
  • In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require the explicit form of nonlinear mapping function. Moreover they need no assumption about the underlying probability distribution of errors. Through numerical studies on two artificial an two real data sets we show their effectiveness on the estimation performance at various confidence levels.