• Title/Summary/Keyword: Quantile regression model

Search Result 89, Processing Time 0.03 seconds

Dynamic analysis of financial market contagion (금융시장 전염 동적 검정)

  • Lee, Hee Soo;Kim, Tae Yoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • We propose methodology to analyze the dynamic mechanisms of financial market contagion under market integration using a biological contagion analytical approach. We employ U-statistic to measure market integration, and a dynamic model based on an error correction mechanism (single equation error correction model) and latent factor model to examine market contagion. We also use quantile regression and Wald-Wolfowitz runs test to test market contagion. This methodology is designed to effectively handle heteroscedasticity and correlated errors. Our simulation results show that the single equation error correction model fits well with the linear regression model with a stationary predictor and correlated errors.

Financial Analysis by Conditional Quantile Regression on Corporate Research & Development Intensity for KOSDAQ-listed Firms in the Korean Capital Market (국내 자본시장의 코스닥 상장기업들의 연구개발비 비중에 대한 분위회귀모형을 활용한 재무적 분석)

  • Kim, Hanjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.179-190
    • /
    • 2020
  • This research analyses the financial characteristics of corporate R&D intensity in the Korean capital market. It is important to pay greater attention to this subject, given the current situation of the shortage of core components domestically in Korea. Three hypotheses are postulated to investigate the financial factors of R&D investments for KOSDAQ-listed firms during the post-era of the global financial turmoil. By applying a conditional quantile regression (CQR) model, three variables included R&D intensity in the previous year (Lag_RD), the squared term of Lag_RD, and interaction between the high-tech sector and Lag_Rd, reveal significant effects on the current R&D ratio. Whereas more than half of the total variables show variable impacts between firms with higher and lower R&D intensity, only Lag_RD and squared term of Lag_RD were found to be significant. It is expected that these results may contribute to being financial catalysts for an optimal level of R&D expenditures, thereby maximizing firm value for shareholders in KOSDAQ-listed firms.

Panel data analysis with regression trees (회귀나무 모형을 이용한 패널데이터 분석)

  • Chang, Youngjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1253-1262
    • /
    • 2014
  • Regression tree is a tree-structured solution in which a simple regression model is fitted to the data in each node made by recursive partitioning of predictor space. There have been many efforts to apply tree algorithms to various regression problems like logistic regression and quantile regression. Recently, algorithms have been expanded to the panel data analysis such as RE-EM algorithm by Sela and Simonoff (2012), and extension of GUIDE by Loh and Zheng (2013). The algorithms are briefly introduced and prediction accuracy of three methods are compared in this paper. In general, RE-EM shows good prediction accuracy with least MSE's in the simulation study. A RE-EM tree fitted to business survey index (BSI) panel data shows that sales BSI is the main factor which affects business entrepreneurs' economic sentiment. The economic sentiment BSI of non-manufacturing industries is higher than that of manufacturing ones among the relatively high sales group.

An Empirical Study on the Analysis of Chinese Foreign Students' Academic Achievement and Fallout (중국 유학생의 학업성취 및 중도탈락 분석에 관한 실증연구)

  • Chae, Dong Woo;Chen, Guo Hua;Jung, Kun Oh
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.3
    • /
    • pp.37-54
    • /
    • 2020
  • In response to the recent decline in the school-age population, universities have made attracting foreign students a major policy task for universities. As a result, the number of foreign students increased rapidly in terms of quantity, but in terms of quality, the risk is inevitable. Accordingly, the government presented education and internationalization competency certification system indicators on the basis of which quality control of students was systematized. Based on the above certification system, this study focused on analyzing the multiple factors that are actually given to the academic adaptation (performance) of the 2200 students who entered a certain university. In addition, factors other than the certification system index were discovered to comprehensively track how they affect the academic performance of students studying abroad. The researcher found the multi-reciprocal model analysis showed that the difference between the learner and the moderator was significant, and whether or not they had the Korean proficiency test (TOPIK) was significant. It also said that it could have a direct impact on Chinese University Entrance Exams (高考) are significant. If a model that is very effective in selecting students is established by each university and used as an indicator through this study, it will serve as a basis for efficient selection of students.

Clustering of Seoul Public Parking Lots and Demand Prediction (서울시 공영주차장 군집화 및 수요 예측)

  • Jeongjoon Hwang;Young-Hyun Shin;Hyo-Sub Sim;Dohyun Kim;Dong-Guen Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.497-514
    • /
    • 2023
  • Purpose: This study aims to estimate the demand for various public parking lots in Seoul by clustering similar demand types of parking lots and predicting the demand for new public parking lots. Methods: We examined real-time parking information data and used time series clustering analysis to cluster public parking lots with similar demand patterns. We also performed various regression analyses of parking demand based on diverse heterogeneous data that affect parking demand and proposed a parking demand prediction model. Results: As a result of cluster analysis, 68 public parking lots in Seoul were clustered into four types with similar demand patterns. We also identified key variables impacting parking demand and obtained a precise model for predicting parking demands. Conclusion: The proposed prediction model can be used to improve the efficiency and publicity of public parking lots in Seoul, and can be used as a basis for constructing new public parking lots that meet the actual demand. Future research could include studies on demand estimation models for each type of parking lot, and studies on the impact of parking lot usage patterns on demand.

The change of rainfall quantiles calculated with artificial neural network model from RCP4.5 climate change scenario (RCP4.5 기후변화 시나리오와 인공신경망을 이용한 우리나라 확률강우량의 변화)

  • Lee, Joohyung;Heo, Jun-Haeng;Kim, Gi Joo;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.130-130
    • /
    • 2022
  • 기후변화로 인한 기상이변 현상으로 폭우와 홍수 등 수문학적 극치 사상의 출현 빈도가 잦아지고 있다. 따라서 이러한 기상이변 현상에 적응하기 위하여 보다 정확한 확률강우량 측정의 필요성이 증가하고 있다. 대장 지점의 미래 확률강우량 계산을 위해선 기후변화 시나리오의 비정상성을 고려해야 한다. 본 연구는 비정상적인 미래 기후에서 확률강우량이 어떻게 변화하는지 측정하는 것을 목표로 한다. Representative Concentration Pathway (RCP4.5)에 따른 우리나라의 확률강우량 계산에 인공신경망을 포함한 정상성, 비정상성 확률강우량 산정 모델들이 사용되었다. 지점빈도해석(AFA), 홍수지수법(IFM), 모분포홍수지수법(PIF), 인공신경망을 이용한 Quantile & Parameter regression technique(QRT & PRT)이 정상성 자료에 대해 확률강우량을 계산하는 모델로 사용되었으며, 비정상성 자료에 대해서는 비정상성 지점빈도해석(NS-AFA), 비정상성 홍수지수법(NS-IFM), 비정상성 모분포홍수지수법(NS-PIF), 인공신경망을 사용한 비정상성 Quantile & Parameter regression technique(NS-QRT & NS-PRT)이 사용되었다. Rescaled Akaike information criterion(rAIC)를 사용한 불확실성 분석과 적합도 검정을 통해서 generalized extreme value(GEV) 분포형 모델이 정상성 및 비정상성 확률강우량 산정에 가장 적합한 모델로 선정되었다. 이후, 관측자료가 GEV(0,0,0)을 따르고 시나리오 자료가 GEV(1,0,0)을 따르는 지점들을 선택하여 미래의 확률강우량 변화를 추정하였다. 각 빈도해석 모델들은 몬테카를로 시뮬레이션을 통해 bias, relative bias(Rbias), root mean square error(RMSE), relative root mean square error(RRMSE)를 바탕으로 측정하여 정확도를 계산하였으며 그 결과 QRT와 NS-QRT가 각각 정상성과 비정상성 자료로부터 가장 정확하게 확률강우량을 계산하였다. 본 연구를 통해 향후 기후변화의 영향으로 확률강우량이 증가할 것으로 예상되며, 비정상성을 고려한 빈도분석 또한 필요함을 제안하였다.

  • PDF

University Hierarchy and Labor Market Outcome - Wage Differentials between Provincial and Seoul Metropolitan Area University Graduates - (대학서열과 노동시장 성과 - 지방대생 임금차별을 중심으로 -)

  • Oh, Hoyoung
    • Journal of Labour Economics
    • /
    • v.30 no.2
    • /
    • pp.87-118
    • /
    • 2007
  • Using KRIVET's Graduates Economic Activities Survey for 2005, this article examines the relationship between university ranking and labor market outcome, with a focus on wage differentials existing between provincial and Seoul metropolitan area university graduates. According to the analysis results, the average monthly wage for provincial university graduates was 1,747.7 thousand Korean won, which is 11.5% lower than that for graduates of universities in the Seoul metropolitan area. School effects on individual wage were estimated to about 12.2% after applying Hierarchical Linear Model technique, which means that university explains only an insignificant part of the total variance in wage among graduates. After controlling for the selection bias, the ability difference between the two areas, by applying the Heckman type 2SLS wage function and Neumark wage differential decomposition technique, the wage gap resulting from the segregation was not identified. This implies that, to a significant extent, the wage gap between provincial and Seoul metropolitan university graduates is attributed to the difference in productivity among individual graduates, rather than to the wage segregation. Also, the estimated wage function by applying Quantile Regression technique indicates that there does not exist any significant wage segregation difference by wage quantile.

  • PDF

Evaluation of Hybrid Downscaling Method Combined Regional Climate Model with Step-Wise Scaling Method (RCM과 단계적 스케일링기법을 연계한 혼합 상세화기법의 적용성 평가)

  • Lee, Moon Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.585-596
    • /
    • 2013
  • The objective of this study is to evaluate the hybrid downscaling method combined Step-Wise Scaling (SWS) method with Regional Climate Model (RCM) simulation data for climate change impact study on hydrology area. The SWS method is divided by 3 categories (extreme event, dry event and the others). The extreme events, wet-dry days and the others are corrected by using regression method, quantile mapping method, mean & variance scaling method. The application and evaluation of SWS method with 3 existing and popular statistical techniques (linear scaling method, quantile mapping method and weather generator method) were performed at the 61 weather stations. At the results, the accuracy of corrected simulation data by using SWS are higher than existing 3 statistical techniques. It is expected that the usability of SWS method will grow up on climate change study when the use of RCM simulation data are increasing.

Estimation of LOADEST coefficients according to watershed characteristics (유역특성에 따른 LOADEST 회귀모형 매개변수 추정)

  • Kim, Kyeung;Kang, Moon Seong;Song, Jung Hun;Park, Jihoon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.151-163
    • /
    • 2018
  • The objective of this study was to estimate LOADEST (LOAD Estimator) coefficients for simulating pollutant loads in ungauged watersheds. Regression models of LOADEST were used to simulate pollutant loads, and the multiple linear regression (MLR) was used for coefficients estimation on watershed characteristics. The fifth and third model of LOADEST were selected to simulate T-N (Total-Nitrogen) and T-P (Total-Phosphorous) loads, respectively. The results and statistics indicated that regression models based on LOADEST simulated pollutant loads reasonably and model coefficients were reliable. However, the results also indicated that LOADEST underestimated pollutant loads and had a bias. For this reason, simulated loads were corrected the bias by a quantile mapping method in this study. Corrected loads indicated that the bias correction was effective. Using multiple regression analysis, a coefficient estimation methods according to the watershed characteristic were developed. Coefficients which calculated by MLR were used in models. The simulated result and statistics indicated that MLR estimated the model coefficients reasonably. Regression models developed in this study would help simulate pollutant loads for ungauged watersheds and be a screen model for policy decision.

Oceanographic indicators for the occurrence of anchovy eggs inferred from generalized additive models

  • Kim, Jin Yeong;Lee, Jae Bong;Suh, Young-Sang
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.7
    • /
    • pp.19.1-19.14
    • /
    • 2020
  • Three generalized additive models were applied to the distribution of anchovy eggs and oceanographic factors to determine the occurrence of anchovy spawning grounds in Korean waters and to identify the indicators of their occurrence using survey data from the spring and summer of 1985, 1995, and 2002. Binomial and Gaussian types of generalized additive models (GAM) and quantile generalized additive models (QGAM) revealed that egg density was influenced mostly by ocean temperature and salinity in spring, and the vertical structure of temperature, salinity, dissolved oxygen, and zooplankton biomass during summer in the upper quantiles of egg density. The GAM and QGAM model deviance explained 18.5-63.2% of the egg distribution in summer in the East and West Sea. For the principle component analysis-based GAMs, the variance explained by the final regression model was 27.3-67.0%, higher than the regular models and QGAMs for egg density in the East and West Sea. By analyzing the distribution of anchovy eggs off the Korean coast, our results revealed the optimal temperature and salinity conditions, in addition to high production and high vertical mixing, as the key indicators of the major spawning grounds of anchovies.