DOI QR코드

DOI QR Code

Estimation of LOADEST coefficients according to watershed characteristics

유역특성에 따른 LOADEST 회귀모형 매개변수 추정

  • Kim, Kyeung (Department of Rural Systems Engineering, Seoul National University) ;
  • Kang, Moon Seong (Department of Rural Systems Engineering, Seoul National University) ;
  • Song, Jung Hun (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Jihoon (Climate Application Department, APEC Climate Center)
  • 김계웅 (서울대학교 지역시스템공학과) ;
  • 강문성 (서울대학교 지역시스템공학과) ;
  • 송정헌 (서울대학교 농업생명과학연구원) ;
  • 박지훈 (APEC 기후센터 응용사업본부)
  • Received : 2017.01.10
  • Accepted : 2017.11.28
  • Published : 2018.02.28

Abstract

The objective of this study was to estimate LOADEST (LOAD Estimator) coefficients for simulating pollutant loads in ungauged watersheds. Regression models of LOADEST were used to simulate pollutant loads, and the multiple linear regression (MLR) was used for coefficients estimation on watershed characteristics. The fifth and third model of LOADEST were selected to simulate T-N (Total-Nitrogen) and T-P (Total-Phosphorous) loads, respectively. The results and statistics indicated that regression models based on LOADEST simulated pollutant loads reasonably and model coefficients were reliable. However, the results also indicated that LOADEST underestimated pollutant loads and had a bias. For this reason, simulated loads were corrected the bias by a quantile mapping method in this study. Corrected loads indicated that the bias correction was effective. Using multiple regression analysis, a coefficient estimation methods according to the watershed characteristic were developed. Coefficients which calculated by MLR were used in models. The simulated result and statistics indicated that MLR estimated the model coefficients reasonably. Regression models developed in this study would help simulate pollutant loads for ungauged watersheds and be a screen model for policy decision.

본 연구에서는 미계측 유역에서 오염부하량 모의를 위해 LOADEST (LOAD Estimator) 기반 회귀모형의 최적 매개변수를 추정하고, 다중회귀분석 기법을 이용하여 유역특성에 따른 회귀 모의 모형의 매개변수 추정 방법을 개발하였으며, 개발된 모형의 적용성을 평가하였다. 오염부하량 모의모형으로, T-N (Total-Nitrogen)은 LOADEST의 5번 회귀모형을, T-P (Total-Phosphorous)는 3번 회귀모형을 선택하였다. 모의결과, T-N, T-P 모두 선택된 회귀모형이 실측치를 잘 반영하였으나, 두 물질 모두 오염부하량이 과소 모의되어 실측치와 편의가 발생하는 것으로 나타나, 분위사상법을 이용하여 모의치의 편의보정을 실시하였다. 보정결과, 모형의 정확도는 크게 변하지 않았으나, 오염부하량이 과소 모의 되는 경향이 감소하는 것으로 나타났다. 다중회귀분석을 이용하여 회귀모형 매개변수와 유역특성간의 회귀식을 개발하였으며, 개발된 식을 평가한 결과, 실측치를 잘 반영하여 모의할 수 있는 것으로 나타났으며, 기존 매개변수에 의한 모의치와 유사한 모의능력을 갖는 것으로 나타났다. 본 연구에서 개발된 매개변수 추정방법은 실측자료가 확보되지 않은 소유역에 대한 오염부하량 모의와 정책결정을 위한 스크린 모델로서 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. An, J. H., Song, J. H., Kang, M. S., Song, I., Jun, S. M., and Park, J. H. (2015). "Regression equations for estimating the TANK model parameters." Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 57, No. 4, pp. 121-133. https://doi.org/10.5389/KSAE.2015.57.4.121
  2. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). "Large area hydrologic modeling and assessment. Part I: Model development." Journal of the American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  3. Carey, R. O., Migliaccio, K. W., and Brown, M. T. (2011). "Nutrient discharges to Biscayne Bay, Florida: trends, loads, and a pollutant index." Science of the Total Environment, Vol. 409, No. 3, pp. 530-539. https://doi.org/10.1016/j.scitotenv.2010.10.029
  4. Das, S. K., Ng, A. W. M., Perera, B. J. C., and Adhikary, S. K (2013). "Effects of climate and landuse activities on water quality in the Yarra River catchment." Proceedings 20th International Congress on Modeling and Simulation, Adelaide, Australia, pp. 2618-2624.
  5. Donigian, A. S. Jr., Imhoff, J. C., Bicknell, B. R., and Kittle, J. L. Jr. (1984). Application guide for Hydrological Simulation Program: Fortran (HSPF). EPA-600/3-84-065, U.S. Environmental Protection Agency, Athens, Georgia.
  6. Engel, B., Storm, D., White, M., Arnold, J., and Arabi, M. (2007). "A hydrologic/water quality model application protocol." Journal of the American Water Resources Association, Vol. 43, No. 5, pp. 1223-1236. https://doi.org/10.1111/j.1752-1688.2007.00105.x
  7. Eom, M. C. (2004). Analysis of pollutant discharge based on temporal and spatial characteristics for a drainage basin in tidal reclaimed areas. Ph. D. dissertation, Seoul National University, pp. 1-8.
  8. Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Skaugen, T. E. (2012). "Technical Note: Downscaling RCM precipitation to the station scale using quantile mapping - a comparison of methods." Hydrology and Earth System Sciences Discussions, Vol. 9, No. 5, pp. 6185-6201. https://doi.org/10.5194/hessd-9-6185-2012
  9. Helsel, D. R., and Hirsch, R. M. (2002). Statistical methods in water resources. U.S. Geological Survey, Reston, Virginia, pp. 295-320.
  10. Huber, W. C., and Dickinson, R. E. (1992). Storm water management model, version 4: user's manual. EPA/600/3-88/001a, U.S. Environmental Protection Agency, Athens, Georgia.
  11. IBM SPSS Statistics ver. 22.
  12. Jeong, H. S. (2014). Modeling socio-hydrological systems for wastewater reused watersheds. Ph. D. dissertation, Seoul National University, pp. 8-11.
  13. Jha, B., and Jha, M. K. (2013). "Rating curve estimation of surface water quality data using LOADEST." Journal of Environmental Protection, Vol. 4, No. 8, pp. 849-856. https://doi.org/10.4236/jep.2013.48099
  14. Jung, C. G., Ahn, S. R., Kim, S. J., Yang, H. J., Lee, H. J., and Park, G. A. (2013). "HSPF and SWAT modelling for identifying runoff reduction effect of nonpoint source pollution by rice straw mulching on upland crops." Journal of the Korean Society of Agricultural Engineer, KSAE, Vol. 55, No. 2, pp. 47-57. https://doi.org/10.5389/KSAE.2013.55.2.047
  15. Kang, M. S., and Kim, C. G. (2009). "Review of hydrologic and nonpoint-source pollution models." Korean National Committee on Irrigation and Drainage, KCID Journal, Vol. 16, No. 1, pp. 20-29.
  16. Kim, H. G. (2009). Modeling hydrologic and water quality effects of impervious surfaces in farm and urban watersheds. Ph. D. dissertation, Seoul National University, p. 120.
  17. Kim, M. J., and Kim, T. G. (2014). "Analysis of runoff characteristics of non-point sources pollutant and application of BMP using Basins/WinHSPF model." Journal of Environmental Impact Assessment, Vol. 23, No. 2, pp. 88-100. https://doi.org/10.14249/eia.2014.23.2.88
  18. Kim, S. J., Kim, P. S., and Yoon, C. Y. (2000). "A regression equation of tank model parameters for daily runoff estimation in a region with insufficient hydrological data." Proceedings of the Korean Society of Agricultural Engineers 2000 Conference, KSAE, pp. 412-418.
  19. Ministry of Environment (2004). Total pollution load control.
  20. Ministry of Environment (2006). Water environmental management plan.
  21. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  22. Morse, N. B., and Wollheim, W. M. (2014). "Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed." Biogeochemistry, Vol 121, pp. 45-59. https://doi.org/10.1007/s10533-014-9998-6
  23. Park, Y. S. (2014). "Estimation of pollutant load using geneticalgorithm and regression model." Korean Journal of Environmental Agriculture, KSEA, Vol. 33, No. 1, pp. 37-43. https://doi.org/10.5338/KJEA.2014.33.1.37
  24. Que, Z., Seidou, O., Droste, R. L., Wilkes, G., Sunohara, M. Topp, E., and Lapen, D. R. (2015). "Using AnnAGNPS to predict the effects of tile drainage control on nutrient and sediment loads for a river basin." Journal of Environmental Quality, Vol. 44, No. 2, pp. 629-641. https://doi.org/10.2134/jeq2014.06.0246
  25. Relevant Ministerial Consortium (2012). Second non-point source management comprehensive plan.
  26. Runkel, R. L., Crawford, C. G., and Cohn, T. A. (2004). Load Estimator (LOADEST): A fortran program for estimating constituent loads in streams and rivers. Techniques and Methods Report No. 4-A5, U.S. Geological Survey, Reston, Virginia.
  27. Shen, Z., Chen, L., Hong, Q., Qiu, J., Xie, H., and Liu, R. (2013). "Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area." Science of the Total Environment, Vol. 454, pp. 383-392.
  28. Shin, M. H., Seo, J. Y., Choi, Y. H., Kim, J. G., Shin, D. S., Lee, Y. J., Jung, M. S., Lim, K. J., and Choi, J. D. (2009). "Evaluation of LOADEST model applicability for NPS pollutant loads estimation from agricultural watershed." Journal of Korean Society on Water Environment, KSWE, Vol 25, No. 2, pp. 212-220.
  29. Tasker, G. D., and Driver, N. E. (1988). "Nationwide regression models for predicting urban runoff water quality at unmonitored sites." Water Resources Bulletin, Vol. 24, No. 5, pp. 1091-1101.
  30. Young, R. A., Onstad, C. A., Bosch, D. D., and Anderson, W. P. (1989). "AGNPS: A non-point source pollution model for evaluating agricultural watersheds." Journal of Soil and Water Conservation, Vol. 44, No. 2, pp. 168-173.
  31. Zhang, P., Liu, Y., Pan, Y., and Yu, Z. (2013). "Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control." Mathematical and Computer Modelling, Vol. 58, No. 3, pp. 588-595. https://doi.org/10.1016/j.mcm.2011.10.061