• Title/Summary/Keyword: Quantile estimation

Search Result 139, Processing Time 0.019 seconds

Nonparametric estimation of conditional quantile with censored data (조건부 분위수의 중도절단을 고려한 비모수적 추정)

  • Kim, Eun-Young;Choi, Hyemi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2013
  • We consider the problem of nonparametrically estimating the conditional quantile function from censored data and propose new estimators here. They are based on local logistic regression technique of Lee et al. (2006) and "double-kernel" technique of Yu and Jones (1998) respectively, which are modified versions under random censoring. We compare those with two existing estimators based on a local linear fits using the check function approach. The comparison is done by a simulation study.

Balancing the nuclear equation: Climate policy uncertainty and budgetary dynamics

  • Chang Li;Sajid Ali;Raima Nazar;Muhammad Saeed Meo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2850-2858
    • /
    • 2024
  • Amidst the uncertainties of climate policy, investing in nuclear energy technology emerges as a sustainable strategy, fostering innovation in a critical sector, while simultaneously addressing urgent environmental concerns and managing budgetary dynamics. Our investigation inspects the asymmetric influence of climate policy uncertainty on nuclear energy technology in the top 10 nations with the highest nuclear energy R&D budgets (Germany, Japan, China, France, USA, UK, India, South Korea, Russia, and Canada). Previous studies adopted panel data methods to evaluate the linkage between climate policy uncertainty and nuclear energy technology. Nonetheless, these investigations overlooked the variability in this association across various countries. Conversely, this investigation introduces an innovative tool, 'Quantile-on-Quantile' to probe this connection merely for every economy. This methodology concedes for a more accurate evaluation, offering a holistic global perspective and delivering tailored insights for individual countries. The findings uncover that climate policy uncertainty significantly reduces nuclear energy technology budgets across multiple quantiles in most selected economies. Additionally, our results highlight the asymmetries in the correlations between our variables across the nations. These findings stress the need for policymakers to conduct thorough assessments and skillfully manage climate policy uncertainty and nuclear energy budgets.

A Comparison of Estimation in an Unbalanced Linear Mixed Model (불균형 선형혼합모형에서 추정량)

  • 송석헌;정병철
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.337-354
    • /
    • 2002
  • This paper derives three estimation methods for the between group variance component for serially correlated random model. To compare their estimation capability, three designs having different degree of unbalancedness are considered. The so-called empirical quantile dispersion graphs(EQDGs) used to compare estimation methods as well as designs. The proposed conditional ANOVA estimation is robust for design unbalancedness, however, ML estimation is preferred to the conditional AOVA and REML estimation regardless of design unbalancedness and correlation coefficient.

Comparison of estimation methods for expectile regression (평률 회귀분석을 위한 추정 방법의 비교)

  • Kim, Jong Min;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.343-352
    • /
    • 2018
  • We can use quantile regression and expectile regression analysis to estimate trends in extreme regions as well as the average trends of response variables in given explanatory variables. In this paper, we compare the performance between the parametric and nonparametric methods for expectile regression. We introduce each estimation method and analyze through various simulations and the application to real data. The nonparametric model showed better results if the model is complex and difficult to deduce the relationship between variables. The use of nonparametric methods can be recommended in terms of the difficulty of assuming a parametric model in expectile regression.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Jeong, Bo-Yoon;Park, Jeong-Soo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.163-169
    • /
    • 2006
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. The method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, ike dimensional nonlinear equations are simplied to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, the L-ME is recommended to use for small sample size $(n\leq100)$ while MLE is good for large sample size.

  • PDF

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

Nonparametric Estimation for Ramp Stress Tests with Stress Bound under Intermittent Inspection (단속적 검사에서 스트레스한계를 가지는 램프스트레스시험을 위한 비모수적 추정)

  • Lee Nak-Young;Ahn Ung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.208-219
    • /
    • 2004
  • This paper considers a nonparametric estimation of lifetime distribution for ramp stress tests with stress bound under intermittent inspection. The test items are inspected only at specified time points an⊂1 so the collected observations are grouped data. Under the cumulative exposure model, two nonparametric estimation methods of estimating the lifetime distribution at use condition stress are proposed for the situation which the time transformation function relating stress to lifetime is a type of the inverse power law. Each of items is initially put on test under ramp stress and then survivors are put on test under constant stress, where all failures in the Inspection interval are assumed to occur at the midi)oint or the endpoint of that interval. Two proposed estimators of quantile from grouped data consisting of the number of items failed in each inspection interval are numerically compared with the maximum likelihood estimator(MLE) based on Weibull distribution.

New generalized inverse Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.147-161
    • /
    • 2016
  • This paper introduces the four parameter new generalized inverse Weibull distribution and investigates the potential usefulness of this model with application to reliability data from engineering studies. The new extended model has upside-down hazard rate function and provides an alternative to existing lifetime distributions. Various structural properties of the new distribution are derived that include explicit expressions for the moments, moment generating function, quantile function and the moments of order statistics. The estimation of model parameters are performed by the method of maximum likelihood and evaluate the performance of maximum likelihood estimation using simulation.

Parameter Estimation and Confidence Limits for the WeibulI Distribution (Weibull 확률분포함수(確率分布函數)의 매개변수(媒介變數) 추정(推定)과 신뢰한계(信賴限界) 유도(誘導))

  • Heo, Jun Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.141-150
    • /
    • 1993
  • For the three parameter Weibull distribution, the parameter estimation techniques are applied and the asymptotic variances of the quantile to obtain the confidence limits for a given return period are derived. Three estimation techniques are used for these purposes: the methods of moments, maximum likelihood and probability weighted moments. The three parameter Weibull distribution as a flood frequency model is applied to actual flood data.

  • PDF

Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior

  • Kim, Hea-Jung;Kim, Dae Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this article, we consider a Bayesian estimation method for the geometric mean of $textsc{k}$ exponential parameters, Using the Tibshirani's orthogonal parameterization, we suggest an invariant prior distribution of the $textsc{k}$ parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.