• Title/Summary/Keyword: Quality of Predictions

Search Result 239, Processing Time 0.044 seconds

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

CNN-ViT Hybrid Aesthetic Evaluation Model Based on Quantification of Cognitive Features in Images (이미지의 인지적 특징 정량화를 통한 CNN-ViT 하이브리드 미학 평가 모델)

  • Soo-Eun Kim;Joon-Shik Lim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.352-359
    • /
    • 2024
  • This paper proposes a CNN-ViT hybrid model that automatically evaluates the aesthetic quality of images by combining local and global features. In this approach, CNN is used to extract local features such as color and object placement, while ViT is employed to analyze the aesthetic value of the image by reflecting global features. Color composition is derived by extracting the primary colors from the input image, creating a color palette, and then passing it through the CNN. The Rule of Thirds is quantified by calculating how closely objects in the image are positioned near the thirds intersection points. These values provide the model with critical information about the color balance and spatial harmony of the image. The model then analyzes the relationship between these factors to predict scores that align closely with human judgment. Experimental results on the AADB image database show that the proposed model achieved a Spearman's Rank Correlation Coefficient (SRCC) of 0.716, indicating more consistent rank predictions, and a Pearson Correlation Coefficient (LCC) of 0.72, which is 2~4% higher than existing models.

Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation (평균기온과 식생의 영향을 고려한 격자기반 일 지표토양온도 예측 모형 개발)

  • Choi, Chihyun;Choi, Daegyu;Choi, Hyun Il;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.137-147
    • /
    • 2012
  • Land surface temperature in ecohydrology is a variable that links surface structure to soil processes and yet its spatial prediction across landscapes with variable surface structure is poorly understood. And there are an insufficient number of soil temperature monitoring stations. In this study, a grid-based land surface temperature prediction model is proposed. Target sites are Andong and Namgang dam region. The proposed model is run in the following way. At first, geo-referenced site specific air temperatures are estimated using a kriging technique from data collected from 60 point weather stations. Then surface soil temperature is computed from the estimated geo-referenced site-specific air temperature and normalized difference vegetation index. After the model is calibrated with data collected from observed remote-sensed soil temperature, a soil temperature map is prepared based on the predictions of the model for each geo-referenced site. The daily and monthly simulated soil temperature shows that the proposed model is useful for reproducing observed soil temperature. Soil temperatures at 30 and 50 cm of soil depth are also well simulated.

Development of Deep Learning Ensemble Modeling for Cryptocurrency Price Prediction : Deep 4-LSTM Ensemble Model (암호화폐 가격 예측을 위한 딥러닝 앙상블 모델링 : Deep 4-LSTM Ensemble Model)

  • Choi, Soo-bin;Shin, Dong-hoon;Yoon, Sang-Hyeak;Kim, Hee-Woong
    • Journal of Information Technology Services
    • /
    • v.19 no.6
    • /
    • pp.131-144
    • /
    • 2020
  • As the blockchain technology attracts attention, interest in cryptocurrency that is received as a reward is also increasing. Currently, investments and transactions are continuing with the expectation and increasing value of cryptocurrency. Accordingly, prediction for cryptocurrency price has been attempted through artificial intelligence technology and social sentiment analysis. The purpose of this paper is to develop a deep learning ensemble model for predicting the price fluctuations and one-day lag price of cryptocurrency based on the design science research method. This paper intends to perform predictive modeling on Ethereum among cryptocurrencies to make predictions more efficiently and accurately than existing models. Therefore, it collects data for five years related to Ethereum price and performs pre-processing through customized functions. In the model development stage, four LSTM models, which are efficient for time series data processing, are utilized to build an ensemble model with the optimal combination of hyperparameters found in the experimental process. Then, based on the performance evaluation scale, the superiority of the model is evaluated through comparison with other deep learning models. The results of this paper have a practical contribution that can be used as a model that shows high performance and predictive rate for cryptocurrency price prediction and price fluctuations. Besides, it shows academic contribution in that it improves the quality of research by following scientific design research procedures that solve scientific problems and create and evaluate new and innovative products in the field of information systems.

Exploring Time Series Data Information Extraction and Regression using DTW based kNN (DTW 거리 기반 kNN을 활용한 시계열 데이터 정보 추출 및 회귀 예측)

  • Hyeonjun Yang;Chaeguk Lim;Woohyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • This study proposes a preprocessing methodology based on Dynamic Time Warping (DTW) and k-Nearest Neighbors (kNN) to effectively represent time series data for predicting the completion quality of electroplating baths. The proposed DTW-based kNN preprocessing approach was applied to various regression models and compared. The results demonstrated a performance improvement of up to 43% in maximum RMSE and 24% in MAE compared to traditional decision tree models. Notably, when integrated with neural network-based regression models, the performance improvements were pronounced. The combined structure of the proposed preprocessing method and regression models appears suitable for situations with long time series data and limited data samples, reducing the risk of overfitting and enabling reasonable predictions even with scarce data. However, as the number of data samples increases, the computational load of the DTW and kNN algorithms also increases, indicating a need for future research to improve computational efficiency.

THERMALHYDRAULIC EVALUATIONS FOR A CANFLEX BUNDLE WITH NATURAL OR RECYCLED URANIUM FUEL IN THE UNCREPT AND CREPT CHANNELS OF A CANDU-6 REACTOR

  • Jun, Ji-Su
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.479-490
    • /
    • 2005
  • The thermalhydraulic performance of a CANDU-6 reactor loaded with various CANFLEX fuel bundles is evaluated by the NUCIRC code, which is incorporated with recent models of pressure drop and critical heat flux (CHF) predictions based on high-pressure steam-water tests for the CANFLEX bundle as well as a 37-element bundle. The distributions of channel flow rate, channel exit quality, critical channel power (CCP), and critical power ratio (CPR) for the CANFLEX bundles (with natural or recycled uranium fuel) in the CANDU-6 reactor fuel channel are calculated by the code. The effects of axial and radial heat flux on CCP are evaluated by assuming that the recycled uranium fuel (CANFLEX-RU) has the same geometric data as the natural uranium fuel bundle (CANFLEX-NU), but a different power distribution due to different fuel composition and refueling scheme. In addition, the effects of pressure tube creep and bearing-pad height are examined by comparing various results of uncrept, and $3.3\%\;and\;5.1\%$ crept channels loaded with CANFLEX bundles with 1.4 mm or 1.7 mm high bearing-pads with those of the 37-element bundle. The distributions of the channel flow rate and CCP for the CANFLEX-NU or -RU bundle show a typical trend for a CANDU-6 reactor channel, and the CPRs are maintained above at least 1.444 (NU) or 1.455 (RU) in the uncrept channel. The enhanced CHF of the CANFLEX bundle (particularly with 1.7mm height bearing-pads) produces a higher thermal margin and considerably less sensitivity to CCP reduction due to the pressure tube creep than the 37-element bundle. The CCP enhancement due to the raised bearing-pads is estimated to be about $3\%\~5\%$ for the CANFLEX-NU and $2\%\~6\%$ for the CANFLEX-RU bundle, respectively.

Exploring the Role of Preference Heterogeneity and Causal Attribution in Online Ratings Dynamics

  • Chu, Wujin;Roh, Minjung
    • Asia Marketing Journal
    • /
    • v.15 no.4
    • /
    • pp.61-101
    • /
    • 2014
  • This study investigates when and how disagreements in online customer ratings prompt more favorable product evaluations. Among the three metrics of volume, valence, and variance that feature in the research on online customer ratings, volume and valence have exhibited consistently positive patterns in their effects on product sales or evaluations (e.g., Dellarocas, Zhang, and Awad 2007; Liu 2006). Ratings variance, or the degree of disagreement among reviewers, however, has shown rather mixed results, with some studies reporting positive effects on product sales (e.g., Clement, Proppe, and Rott 2007) while others finding negative effects on product evaluations (e.g., Zhu and Zhang 2010). This study aims to resolve these contradictory findings by introducing preference heterogeneity as a possible moderator and causal attribution as a mediator to account for the moderating effect. The main proposition of this study is that when preference heterogeneity is perceived as high, a disagreement in ratings is attributed more to reviewers' different preferences than to unreliable product quality, which in turn prompts better quality evaluations of a product. Because disagreements mostly result from differences in reviewers' tastes or the low reliability of a product's quality (Mizerski 1982; Sen and Lerman 2007), a greater level of attribution to reviewer tastes can mitigate the negative effect of disagreement on product evaluations. Specifically, if consumers infer that reviewers' heterogeneous preferences result in subjectively different experiences and thereby highly diverse ratings, they would not disregard the overall quality of a product. However, if consumers infer that reviewers' preferences are quite homogeneous and thus the low reliability of the product quality contributes to such disagreements, they would discount the overall product quality. Therefore, consumers would respond more favorably to disagreements in ratings when preference heterogeneity is perceived as high rather than low. This study furthermore extends this prediction to the various levels of average ratings. The heuristicsystematic processing model so far indicates that the engagement in effortful systematic processing occurs only when sufficient motivation is present (Hann et al. 2007; Maheswaran and Chaiken 1991; Martin and Davies 1998). One of the key factors affecting this motivation is the aspiration level of the decision maker. Only under conditions that meet or exceed his aspiration level does he tend to engage in systematic processing (Patzelt and Shepherd 2008; Stephanous and Sage 1987). Therefore, systematic causal attribution processing regarding ratings variance is likely more activated when the average rating is high enough to meet the aspiration level than when it is too low to meet it. Considering that the interaction between ratings variance and preference heterogeneity occurs through the mediation of causal attribution, this greater activation of causal attribution in high versus low average ratings would lead to more pronounced interaction between ratings variance and preference heterogeneity in high versus low average ratings. Overall, this study proposes that the interaction between ratings variance and preference heterogeneity is more pronounced when the average rating is high as compared to when it is low. Two laboratory studies lend support to these predictions. Study 1 reveals that participants exposed to a high-preference heterogeneity book title (i.e., a novel) attributed disagreement in ratings more to reviewers' tastes, and thereby more favorably evaluated books with such ratings, compared to those exposed to a low-preference heterogeneity title (i.e., an English listening practice book). Study 2 then extended these findings to the various levels of average ratings and found that this greater preference for disagreement options under high preference heterogeneity is more pronounced when the average rating is high compared to when it is low. This study makes an important theoretical contribution to the online customer ratings literature by showing that preference heterogeneity serves as a key moderator of the effect of ratings variance on product evaluations and that causal attribution acts as a mediator of this moderation effect. A more comprehensive picture of the interplay among ratings variance, preference heterogeneity, and average ratings is also provided by revealing that the interaction between ratings variance and preference heterogeneity varies as a function of the average rating. In addition, this work provides some significant managerial implications for marketers in terms of how they manage word of mouth. Because a lack of consensus creates some uncertainty and anxiety over the given information, consumers experience a psychological burden regarding their choice of a product when ratings show disagreement. The results of this study offer a way to address this problem. By explicitly clarifying that there are many more differences in tastes among reviewers than expected, marketers can allow consumers to speculate that differing tastes of reviewers rather than an uncertain or poor product quality contribute to such conflicts in ratings. Thus, when fierce disagreements are observed in the WOM arena, marketers are advised to communicate to consumers that diverse, rather than uniform, tastes govern reviews and evaluations of products.

  • PDF

Rock Mass Classification and Its Use in Blast Design for Tunneling (암분류기법과 터널굴착을 위한 발파설계에의 활용)

  • Ryu Chang-Ha;SunWoo Choon;Choi Byung-Hee
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Building tunnels means dealing with what rock is encountered. Relocation of the site of the underground structure is rarely possible. Tunneling engineers and miners have to cope with the quality of the rock mass as it is. Different tunneling philosophies and different rock classification methods have been developed in various countries. Most of the rock classification methods are based on the response of the rock mass to the excavation. Tunnel support requirements could be assessed analytically, supplemented by rock mass classification predictions, and verified by measurements during construction. Rock mass classifications on their own should only be used for preliminary, planning purposes and not for final tunnel support. Design of blast pattern in tunneling projects in Korea is also mostly prepared according to the general rock classification methods such as RMR or Q. They, however, do not take into account the blast performance, and as a consequence, produce poor blasting results. In this paper, the methods of general rock classification and blast design for tunnel excavation in Korea are reviewed, and efforts to develop a new classification method, reflecting the blasting performance, are presented.

A Study on the Reliability Prediction for Space Systems (우주 시스템의 신뢰성 예측에 관한 연구)

  • Yu, Seung-U;Lee, Baek-Jun;Jin, Yeong-Gwon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.227-239
    • /
    • 2006
  • Reliability prediction provides a rational basis for design decisions such as the choice between alternative concepts, choice of part quality levels, derating factors to be applied, use of proven versus state-of-the-art techniques, and other factors. For this reasons, reliability prediction is essential functions in developing space systems. The worth of the quantitative expression lies in the information conveyed with the numerical value and the use which is made of that information and reliability prediction should be initiated early in the configuration definition stage to aid in the evaluation of the design and to provide a basis for item reliability allocation (apportionment) and establishing corrective action priorities. Reliability models and predictions are updated when there is a significant change in the item design availability of design details, environmental requirements, stress data, failure rate data, or service use profile. In this paper, the procedure, selection of reliability data and methods for space system reliability prediction is presented.

  • PDF

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF