• Title/Summary/Keyword: Quality factor Q$_{}$ m/

Search Result 162, Processing Time 0.028 seconds

A Low-voltage Active CMOS Inductor with High Quality Factor (높은 Q값을 갖는 저전압 능동 CMOS 인덕터)

  • Yu, Tae-Geun;Hong, Suk-Yong;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • A low-voltage active CMOS inductor approach, which can improve the quality-factor(Q), is proposed in this paper. A low-voltage active inductor circuit topology with a feedback resistance is proposed, which can substantially improve its equivalent inductance and quality-factor(Q). This proposed low-voltage active inductor with a feedback resistance was simulated by ADS(Agilent) using 0.18um standard CMOS technology. Simulation showed that the designed active inductor had a maximum quality-factor(Q) of 3000 with a 1.5nH inductance at 4GHz

Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3)0.02(Ni1/3Nb2/30.12(ZrxTi1-x)0.86O3 System Ceramics

  • Yoo, Ju-Hyun;Lee, Sang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.121-124
    • /
    • 2009
  • In this study, in order to develop compositions of ceramics suitable for piezoelectric actuator and ultrasonic vibrator applications using low temperature sintering, multilayer, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids. Their structural, piezoelectric and dielectric characteristics were investigated according to the Zr/Ti ratio. As the Zr/Ti ratio increased, the electromechanical coupling factor $k_p$, and piezoelectric constant $d_{33}$ and the mechanical quality factor $Q_m$ all increased with Zr/Ti ratio and then decreased after the ratio exceeded 50/50. At the ratio of Zr/Ti =49/51 and sintering temperature of $900^{\circ}C$; the density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$ piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ all showed the optimum values of 7.900 $g/cm^3$, 0.576, 856, 312 pC/N, 1,326, respectively. These property values are very suitable for multilayer ceramics actuator applications.

A Study on the Properties of the Low Temperature Sintered Piezoelectrics for Actuator Application (압전 액츄에이터에 활용할 저온소결 압전 세라믹스에 관한 연구)

  • Ryu, Sung-Lim;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.232-235
    • /
    • 2008
  • In this study, in order to develop the composition ceramics for multilayer piezoelectric actuator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$, $Na_2CO_3$, ZnO as sintering aids and their piezoelectric and dielectric properties were investigated according to the Bi substitution, Bi substitution induced grain growth and increase of sinterablity, And also, Bi substitution suppress secondary phase due to the liquid phase sintering effect. Bi substitution enhanced electromechanical coupling factor ($k_p$) and dielectric constant ($\varepsilon_r$), However, mechanical quality factor($Q_m$) was deteriorated, At the sintering temperature of 870 $^{\circ}C$ and Bi substitution of 1 mol%, density, electromechanical coupling factor ($k_p$), mechanical quality factor ($Q_m$), Dielectric constant ($\varepsilon_r$) and piezoelectric constant ($d_{33}$) of specimen showed the optimum values of 7,878 $g/cm^3$, 0,608, 835, 1603 and 397 pC/N, respectively for multilayer piezoelectric actuator application.

The Characteristics of PZ-PT PMN Piezoelectric Ceramics for Application to High Power Device (고출력 압전 디바이스 응용을 위한 PZ-PT-PMN계 압전 세라믹의 특성)

  • ;洪鍾國
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.156-156
    • /
    • 2000
  • The piezoelectric properties and the doping effect for $0.95Pb(Zr_xTi_{l-x})O_3+0.O5Pb(Mn_{1/3}Nb_{2/3})O_3$compositions were studied. Also, the heat generation and the change of electromechanical characteristics, the important problem in practical usage, were investigated under high electric field driving. As a experiment results under low electric field, the value of $k_p$ and ${\varepsilon}_{33}^T$ were maximized, but $Q_m$ was minimized $(k_p=0.57, Q_m=1550)$ in the composition of x=0.51. In order to increase the values of $Q_m$, $Nb_2O_5$ was used as a dopant. As the result of that, the grain size was suppressed and the uniformity of grain was improved. Also, the values of $k_p$ decreased, and the values of $Q_m$ increased with doping concentration of $Nb_2O_5$ . As a experiment results under high electric field driving, when vibration velocity was ower than 0.6[m/s], the temperature increase was 20[℃], and the change ratio of mechanical quality factor was less than 10[%]. So, its electromechanical characteristics was very stable. Conclusively, piezoelectric ceramic composition investigated at this paper is suitable for application to high power piezoelectric devices.

Piezoelectric properties of Pb-free BNKT ceramics with the amount of $La_2O_3$ addition ($La_2O_3$ 첨가에 따른 무연 BNKT세라믹의 압전 특성)

  • Lee, Hyun-Seok;Lee, Chang-Bae;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Hong, Jael-Il;Chung, Kwang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.145-149
    • /
    • 2004
  • In this study, leed-free piezoelectric ceramics were investigated for pressure sensor applications as a function of the amount of $La_2O_3$ addition at BNKT system. With increasing amount of $La_2O_3$ addition, density and dielectric constant were increased up to 0.9wt% addition and decreased after 0.9wt% addition, electromechanical coupling factor$(k_p)$ and mechanical quality factor$(Q_m)$ showed the maximum values at 0.2wt% addition and decreased after 0.2wt% addition. The $k_p$, density, dielectric constant and $Q_m$ were showed the optimum values of 0.40, $5.71g/cm^3$, 768 and 118 at $La_2O_3$ 0.2wt% addition, respectively.

  • PDF

A Study on the Low Temperature Sintering Piezoelectric Ceramics for Piezoelectric Actuator Application (압전 액츄에이터에 활용할 저온소결 압전 세라믹스에 관한 연구)

  • Ryu, Sung-Lim;Lee, Yu-Hyung;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.277-278
    • /
    • 2007
  • In this study, in order to develop multilayer piezo-actuator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3,\;Na_2CO_3$, ZnO as sintering aids and their piezoelectric and dielectric properties were investigated according to the Bi substitution. Bi substitution enhanced electromechanical coupling factor$(k_p)$ and dielectric constant$({\varepsilon}_r)$. However, mechanical quality factor was deteriorated. At the sintering temperature of $870^{\circ}C$ and Bi substitution of 1mol%, density, electromechanical coupling factor$(k_p)$, mechanical quality factor$(Q_m)$, Dielectric constant$({\varepsilon}_r)$ and piezoelectric constant$(d_{33})$ of specimen showed the optimum value of $7.878g/cm^3$, 0.608, 835, 1603 and 397pC/N, respectively.

  • PDF

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications

  • Cho, Je-Kwang;Nah, Kyung-Suc;Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.83-87
    • /
    • 2004
  • Phase noise performance and current consumption of Radio Frequency (RF) Voltage-Controlled Oscillator (VCO) are largely dependent on the Quality (Q) factor of inductor-capacitor (LC) tank. Because the Q-factor of LC tank is determined by on-chip spiral inductor, we designed, analyzed, and modeled on-chip differential inductor to enhance differential Q-factor, reduce current consumption and save silicon area. The simulated inductance is 3.3 nH and Q-factor is 15 at 2 GHz. Self-resonance frequency is as high as 13 GHz. To verify its use to RF applications, we designed 2 GHz differential LC VCO. The measurement result of phase noise is -112 dBc/Hz at an offset frequency of 100 kHz from a 2GHz carrier frequency. Tuning range is about 500 MHz (25%), and current consumption varies from 5mA to 8.4 mA using bias control technique. Implemented in $0.35-{\mu}m$ SiGe BiCMOS technology, the VCO occupies $400\;um{\times}800\;um$ of silicon area.

KCT첨가에 따른 $(Na,K)NbO_3$ 세라믹스의 압전특성

  • No, Jeong-Rae;Lee, Yu-Hyeong;Ryu, Ju-Hyeon;Yun, Hyeon-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.93-93
    • /
    • 2009
  • In this study, in order to develop excellent lead-free composition ceramics for piezoelectric transformer, $(K_{5.4}Cu_{1.3}Ta_{10}O_{29})$ added $(K_{0.5}Na_{0.5}](Nb_{0.97}Sb_{0.03})O_3$ were fabricated using conventional mixed oxide method. At the 0.9mol% KCT added specimen, electromechanical coupling factor(kp) and mechanical quality factor ($Q_m$) showed the optimal values of 0.437 and 727.07, respectively, for piezoelectric transformer application.

  • PDF

Electrical properties of $MnO_2$doped PSN-PNN-PT ceramics ($MnO_2$가 첨가된 PSN-PNN-PT세라믹스의 전기적인 특성)

  • 이종덕;박상만;박기엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.959-962
    • /
    • 2001
  • In this study, the piezoelectric and dielectric properties and Temperature stability of resonant frequency with MnO$_2$doped 0.36Pb(Sc$_{1}$2/Nb$_{1}$2/)O$_3$- 0.25Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-0.39PbTiO$_3$(hereafter PSNNT) were investigated. The tetagonality of crystal structure was developed with increasing MnO$_2$additive content. With increasing MnO$_2$additive content, the electromechanical coupling factor and quality factor were increased. Electromechanical coupling k$_{p}$ and quality factor Q$_{m}$ at MnO$_2$doped with 2.0mol% were showed highest value of 55.6% and 252. In the case of specimen for MnO$_2$doped with 2mol%, temperature dependance of resonant frequency had a good properties.ies.

  • PDF

Dielectric and Piezoelectric Properties of Low Temperature Sintering PSN-PZI Ceramics with BiFe3 Substitution (BiFe3첨가에 따른 저온소결 PSN-PZT세라믹스의 유전 및 압전 특성)

  • 류주현;정광현;정영호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.492-496
    • /
    • 2004
  • In this study, (0.96 -x)(PSN-PZT)-xBF-0.04 PNW+0.3wt%MnO$_2$+0.6wt%CuO ceramics were fabricated with the variations of the amount of BiFeO$_3$substitution and sintering temperature for the development of modified ceramics which can be sintered in the low temperature($\leq$100$0^{\circ}C$ ), and their microstructural, dielectric and piezoelectric characteristics were investigated. As the amount of BiFeO$_3$ substitution was increased, the density, mechanical quality factor(Q$_{m}$) and electromechanical coupling factor(k$_{p}$) showed the maximum value at each of sintering temperature. At sintering temperature of 98$0^{\circ}C$ and BiFeO$_3$substitution of 2 mol%, the density, dielectric constant and electromechanical coupling factor(k$_{p}$) showed the maximum value of 7.84 g/㎤, 1415 and 0.49, respectively. And at sintering temperature of 95$0^{\circ}C$ and BiFeO$_3$substitution of 3mol%, mechanical quality factor showed the maximum value of 1062. 1062.